Semester: Spring, 2012
Section: 002
Code: 50403
Meeting Times: Tu and Th from 5:30 – 6:45 PM
Location: Center for the Instruction
Room: CI126
Instructor: D. Thomas
Office: CI319
Telephone: 361-825-2475
Telephone: 361-825-2475
Office Hours: TBD
(or by appointment)
E-mail: david.thomas@tamucc.edu

Course: Math2305, Discrete Mathematics I

Course Description:
An introductory study of selected mathematical ideas having significant applications to computer science. Such topics include formal logic, methods of proof, probability, combinatorial methods, graphs and trees, recursive definitions and relations on sets.

Course Prerequisites:
MATH1314 (College Algebra) and MATH1316 (Trigonometry), or MATH2312 (Precalculus); or placement beyond MATH2312 (Precalculus)

Student Learning Outcomes:
- The student will become familiar with relevant terminology, theorems, and examples.
- The student will be able to solve problems relating to the course material.
- The student will have been exposed to the need for mathematics in computer science.
- The student will have been provided with the opportunity to practice reading mathematics.

Major Course Requirements:
Course grades will be determined by three examinations whose contents will be guided by the previously described learning outcomes. The examinations will consist of problems and examples selected from the course textbook, definitions, theorem statements, and related material. A detailed list of examination topics will be distributed.

Each examination will contribute equally towards the final grade. The examination average score will be used to assign grades using a “traditional” 90, 80, 70, 60 percent distribution for “A”, “B”, “C”, and “D”, respectively. The examinations will occur approximately during the sixth week, the tenth week, and during the University-determined final examination period.
Course Overview:
In overview, we will be concerned with introductory concepts in areas of mathematics to include mathematical logic, set theory, combinatorics, probability, relations on sets, and graph theory. Topics considered are of considerable significance in computer science.

These topics, although unrelated in some regards, all involve "discrete" ideas as opposed to "continuous" ones. Roughly, “discrete” refers to the notion that the objects being studied are separated by some minimum (nonzero) distance. In this sense the sets \{1, 2, 3\} and \{1, 2, 3, ...\} are discrete, while the set of all real numbers and the closed interval \([0, 1]\) are not.

Approximate Course Outline:
We will proceed guided by the following outline. The text sections shown in smaller, italic text will be considered to the extent that time allows.

<table>
<thead>
<tr>
<th>Week</th>
<th>Meeting</th>
<th>Date</th>
<th>Text Section(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1-12</td>
<td>General Introduction</td>
</tr>
<tr>
<td>1</td>
<td>2-3</td>
<td>1-17, 19</td>
<td>(Chapter 1 Speaking Mathematically)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1 Variables</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2 The Language of Sets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3 The Language of Relations and Function</td>
</tr>
<tr>
<td>2</td>
<td>4-5</td>
<td>1-24, 26</td>
<td>(Chapter 2 Logic of Compound Statements)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.1 Logical Form and Logical Equivalence</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.2 Conditional Statements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.3 Valid and Invalid Arguments; (2.4, 2.5\ not covered)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Chapter 3: Logic of Quantified Statements)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.1 Introduction to Predicates and Quantified Statements I</td>
</tr>
<tr>
<td>3</td>
<td>6-7</td>
<td>1-31, 2-2</td>
<td>2.3 Valid and Invalid Arguments; (2.4, 2.5\ not covered)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Chapter 3: Logic of Quantified Statements)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.1 Introduction to Predicates and Quantified Statements I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.2 Introduction to Predicates and Quantified Statements II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.3 Statements with Multiple Quantifiers</td>
</tr>
<tr>
<td>4</td>
<td>8--9</td>
<td>2-7, 9</td>
<td>3.2 Introduction to Predicates and Quantified Statements II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.3 Statements with Multiple Quantifiers</td>
</tr>
<tr>
<td>5</td>
<td>10-11</td>
<td>2-14, 16</td>
<td>3.4 Augments with Quantified Statements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Chapter 4: Elementary Number Theory and Methods of Proof)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.1 Direct Proof and Counterexample I: Introduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.2 Direct Proof and Counterexample II: Rational Numbers</td>
</tr>
<tr>
<td>6</td>
<td>12-13</td>
<td>2-21, 23</td>
<td>4.3 Direct Proof and Counterexample III: Divisibility</td>
</tr>
</tbody>
</table>
4.4, 4.5, nor covered
4.6 Indirect Proof Contradiction and Contraposition

7 14-15 2-28, 3-1 **Review for Examination #1**
Examination #1

8 16-17 3-6, 8 (Chapter 5: Sequences and Mathematical Induction)
 5.1 Sequences
 5.2 Mathematical Induction

* ***** 3-13, 15 **Spring Break**

9 18-19 3-20, 22 5.2 Mathematical Induction
 (Chapter 6: Set Theory)
 6.1 Basic Definitions of Set Theory

10 20-21 3-27, 29 (Chapter 9: Counting and Probability)
 9.1 Introduction to Probability
 9.2 Possibility trees and the Multiplication Rule

11 22-23 4-3, 5 9.3 Counting of Disjoint Sets: the Addition Rule
 9.4 Pigeonhole Principle, not cove
 9.5 Counting Subsets of Sets: Combinations

Examination #2

12 24-25 4-10, 12 Review for Examination #2
Examination #2

13 26-27 4-17, 19 (Chapter 10: Graphs and Trees)
 10.1 Introduction to Graphs
 Skip 10.2-10.4
 10.5 Trees

14 28-29 4-24, 26 5.6 Recursive Definitions

15 30 5-1 10.2 Paths and Circuits
 7.4 Cardinality with Applications to Computability

16 **Examination #3 (in the usual meeting room at a date and time determined by the University-mandated final examination schedule)**
Some Notes Concerning Various University and College Procedures:

- **Course Withdrawal:**
The student is responsible for the paperwork associated with registration in this course. In the unlikely event that you decide to withdraw from this (or any) course you must submit the required documents prior to any University deadline date(s).

You should initiate the course withdrawal process by going to the Student Services Center and filling out a course drop form. Please be certain that you properly submit this paperwork. Should my signature be required you may obtain it either at a class meeting, during my regularly scheduled office hours, or by appointment. Failure to properly complete this course withdrawal procedure will result in your receiving a course grade based on the work you have actually completed.

- **Academic Integrity/Plagiarism.**
University students are expected to conduct themselves in accordance with the highest standards of academic honesty. Academic misconduct for which a student is subject to disciplinary action includes all forms of cheating, such as illicit possession of examination materials, falsification of records, forgery, and plagiarism. (Plagiarism being the presentation of the work of another as one’s own work.)

- **Accommodations for Students with Disabilities:**
Texas A&M University-Corpus Christi complies with the Americans with Disabilities Act in making reasonable accommodations for qualified students with disabilities. If you suspect that you may have a disability (physical impairment, learning disability, psychiatric disability, etc.), please contact the Services for Students with Disabilities Office, located in Driftwood 101, at 825-5816. If you need disability accommodations in this class, please see me as soon as possible.

- **Requirements for Academic Advising:**
The College of Science and Technology requires that students meet with an Academic Advisor in order to declare a major field of study. The Academic Advisor will set up a degree plan, which must be signed by the student, a faculty mentor, and the Department chair. The College of Science and Technology Advising Center is located in Faculty Center Room 178, and may be reached at (361) 825-6094.

- **Appeals of Course Grades:**
As stated in University Rule 13.02.99.C2, Student Grade Appeals, a student who believes that he or she has not been held to appropriate academic standards as outlined in the class syllabus, equitable evaluation procedures, or appropriate grading, may appeal the final grade given in the course. The burden of proof is upon the student to demonstrate the appropriateness of the appeal. A student with a complaint about a grade is encouraged to first discuss the matter with the instructor. For complete details, including the responsibilities of the parties involved in the process and the number of days allowed for completing the steps in the process, see University
Rule 13.02.99.C2, Student Grade Appeals, and University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures. These documents are accessible through the University Rules Web site at http://www.tamucc.edu/provost/university_rules/index.html. For assistance and/or guidance in the grade appeal process, students may contact the Office of Student Affairs.