Arts 5302.001:
MA STUDIO IN ART: CERAMICS Time-Based Media in Visual Arts
This syllabus is subject to change.
Graduate Students in ceramics in the last 2 semesters before their thesis semester should continue working on portfolio, statement, and comparisons with other contemporary work.

Although not a part of the class it is expected that most students will attend Sloss and/or NCECA.

This is an unusual graduate art course in that it contains very specific skill acquisition. Assignments that do not fit a student's body of work, or motivation may be exchanged for other assignments with instructor consultation and agreement. The graduate student should be able to develop Students wishing to work solely in clay may ask for an alternate program than the one outlined out in this syllabus.

Semesterly Information:
- Office Hours: M-R 1:15 -2:30pm
- Final Exam: See online schedule.

Stable Information and Teacher Information:
- Name of Instructor: Katz, Louis
- Office phone number: 361 825-5987
- E-mail address: louis.katz@tamucc.edu
- Office number and building: CA112
- This syllabus is subject to change.
- LOCKERS: See the Art Office (CA107) to reserve a locker in the hallway. You will need one. The sooner you get one the closer it will be to the studio. If you wait there might not be one available.
- Required statements:
 * Notice to Students with Disabilities: Texas A&M University-Corpus Christi complies with the Americans with Disabilities Act in making reasonable accommodations for qualified students with disabilities. If you suspect that you may have a disability (physical impairment, learning disability, psychiatric disability, etc.), please contact the Services for Students with Disabilities Office, located in Driftwood 101, at 825-5816. If you need disability accommodations in this class, please see me as soon as possible.
 **ACADEMIC ADVISING: The College of Liberal Arts requires that students meet with an Academic Advisor as soon as they are ready to declare a major. The Academic Advisor will set up a degree plan, which must be signed by the student, a faculty mentor, and the department chair. The College's Academic Advising Center is located in Driftwood 203E, and can be reached at 825-3466.
 *** Grade Appeal Process. As stated in University Rule 13.02.99.C2, Student Grade Appeals, a student who believes that he or she has not been held to appropriate academic standards as outlined in the class syllabus, equitable evaluation procedures, or appropriate grading, may appeal the final grade given in the course. The burden of proof is upon the student to demonstrate the appropriateness of the appeal. A student with a complaint about a grade is encouraged to first discuss the matter with the instructor. For complete details, including the responsibilities of the
parties involved in the process and the number of days allowed for completing the steps in the process, see University Rule 13.02.99.C2, Student Grade Appeals, and University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures. These documents are accessible through the University Rules Web site at http://www.tamucc.edu/provost/university_rules/index.html. For assistance and/or guidance in the grade appeal process, students may contact the Office of Student Affairs.

Description:
The student in this course will develop a portfolio of time based and installation skills. The student will learn a variety of video, sound, performance, and some electronic control skills and techniques to apply to their work. The area of Time based media is exceptionally broad, growing in quality, content, available media, and technical complexity. This course cannot and will not cover all aspects of time base works. Discussions, critiques, and independent research, and production of art will be important aspects of the course. There will be several assignments designed to just show learned competence in particular areas.

A high level of commitment and initiative is expected. Graduate students are encouraged to discuss the class with the instructor before enrolling. (Graduate Students in Art taking this course are expected to integrate these projects into their body of work. The works should reflect the concerns issues of the student in their major body of work. Deviations from this are sometime necessary but should be discussed with the instructor.)

Student Learning Outcomes
1. Student will acquire skills related to time based media. Individual students may not make use of each of these skills in their projects but they will include: assembly and manipulation of simple time lapse and stop motion videos, some basic video editing, time lapse, stop motion, simple use of Arduino controller boards for timing, sensing and interaction.
2. Student will experience the use of time as an element of and as an instrument of change in their artwork. This may involve kinetic art, or aspects of performance.
3. Student will discuss concepts intrinsic to time based work.
4. Students will analyze sites for consideration of installation of time based and installation works.
5. Students will explore ways to document their time based and site specific work, and learn to consider the documentation as a separate work.
6. Students will research and analyze time based works.
7. Students will learn how to analyze electrical needs for projects using watts amps and volts. This material is not complex but needs to be understood.

Students will be required to have a digital camera or cameras capable of recording video and still images. An Arduino board and associated electronic parts will also be required (see parts list).
Students must be comfortable with computers, they do not need to know any specific software package, but must be able to learn at least in part on their own. Owning or having access to a computer may become necessary for some assignments.

Students will be required to use the campus email account, participate in a listserv, and sign up for and use a youtube account.

These nonassignments may occur in any order. The any of them may require several attempts. The Arduino assignment may require several lapses in time for consultation, and parts orders, learning skills, debugging the Arduino programs and hardware. It can be very difficult to come up with successful solutions to problems with microcomputer interfacing in a short time span. The semester will need to be used effectively. This assignment may make multitasking necessary with the other assignments. With permission of the instructor and layout of individual responsibility students may chose to do projects as groups.

NonAssignment One. It is critical that students have the exposure created by these and gather the skills. The specifics in these assignments are not critical.

Change Time-lapse or Stop-Motion. Student will create a work of art that changes over time. The work will be documented with time lapse photography or the work may be the time lapse photography.

There are many approaches to this project that will work. I will list a few. Using time lapse or stop motion to document the construction of a piece of art. Using time lapse or stop motion to document the natural destruction, growth or alteration of a piece. Using time lapse or stop motion to introduce the viewer to multiple aspects of the same piece. Using time lapse or stop motion to change the context of a dynamic scene or object. The intent of this project is to make sure the student has the skills to do the assignment, has begun thinking about the possibilities of such work, and the complexities of professional completion.

Goals: learn the techniques, consider the application to your own work, consider the variables, make something that adds to the discussion.

NonAssignment Two

Learn to use an Arduino microcontroller and use it for something robotic or involving interaction. There will be a series of demonstrations on this device. There will be suggested tutorial excercises. This project may take many weeks (the whole semester) to complete. Arduinos can make sound, be used to play recorded sound, move motors, or turn on and off electric devices. They can be programmed to react to light, proximity, motion, switches, sounds, or other stimuli or do complex time based sequencing. Each student will be expected to become a resource person for a
sensor or output device. The teacher, the web, another student… any source
text can be used to obtain this expertise.
Goals: learn the techniques, consider the application to your own work, consider the
variables, make something that adds to the discussion. For this assignment I was
each student to build something with input from sensors, or switches and output in
light, motion, or text.

NonAssignment Three. This assignment is tentative and its nature will be
determined in consultation with the students. Make a piece of work and install it in
an unused location in Center for the Arts. Maybe think gorilla, but please don't get
"in your face" or create trouble for your instructor or the department. These pieces
should be time based; should change (long term?) over time or be kinetic (short
term?). I would like to be able to teach the class more than once. Consult the
instructor before installation. It may require other permission. No permanent
changes or damage to the building are allowed, it must not interfere with the normal
functioning of the building. Start consideration of this piece at the start of the
semester.

NonAssignment Four. Document activities required to make one of the assignments
above as an art work. This can involve drawings or still photographs, a video, an
audio journal, it can be any documentation. It can be a time lapse or animation and
also count as assignment one. It may not be "just a photograph" unless that
photograph substantive exists as a work of art and not just a photographic record.

Class times will alternate between demonstrations and lectures, work days, and
looking at work as a group.

Ongoing:
Students will find related work online or in books. The method of communicating
these findings to other students will be determined by the class the first day.

Beginning Materials list
Stop Motion- Time Lapse software.
Webcam software: Gawker (Freeware)
Image Assembly: Graphic Convertor (shareware), Image Ready (Adobe Suite) will be
demonstrated, there are plenty of others.

1. A computer will be necessary to complete the course work.
2. A camera capable of video and still photos, and a tripod.
3. An Arduino there are a few options so order after the first class meeting.
Adafruit Arduino Starter Pack, Adafruit ARDX - v1.3 Experimentation Kit for
Arduino, Adafruit Budget Pack for Arduino (Arduino Uno R3)
Louis' Elecltronic Parts Links http://falcon.tamucc.edu/wiki/Katz/ProG
Grading
Students are expected to show competence in each area. It is not expected that the
student will use each of the taught techniques for their graduate level work. On the other hand students in this course are expected to integrate some of the
assignments significantly into their body of work.

There will be one, perhaps two, quizzes, on simple electrical units, electrical safety
and Arduino specific electrical limits.

A students portfolio of work for the semester will be graded as a whole. The following characteristics will be included in the grade: demonstration of competence in each area. passing the quizzes. complexity of attempted work. successful completion of a piece that integrates into the student's oeuvre(body of work). The student is expected to produce at least two works that are of the quality expected of graduate students.

Rubric

<table>
<thead>
<tr>
<th>Electric test(s)</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrated skills in each assignment area (1 each total 4)</td>
<td></td>
</tr>
<tr>
<td>Graduate quality work in two pieces (2 each total 4)</td>
<td></td>
</tr>
<tr>
<td>Participation in discussions and online communication</td>
<td>2</td>
</tr>
<tr>
<td>Total 11</td>
<td></td>
</tr>
<tr>
<td>9-11 A</td>
<td></td>
</tr>
<tr>
<td>8-8.9 B</td>
<td></td>
</tr>
<tr>
<td>6-7.9 C</td>
<td></td>
</tr>
<tr>
<td>no D's</td>
<td></td>
</tr>
</tbody>
</table>

Incomplete policy for this class. Only the finished projects and skill acquisition evidence are available for completion after the end of the semester. In order to obtain an incomplete the student must have done 2/3 of the semester work.

Schedule
The first two classes will be introductions, explanations of projects, and a discussion of choices of basic Arduino hardware. The first two class meetings of every month will be reserved to critique finished work, and interact with works in progress. If a work is installed or available for only a few class meetings this may take place during classes other than the first meeting each month. The classes other than the first two and first each month will start with questions about how to make things work, progress reports of where people are in their ideation, learning of techniques, and construction or implementation of their projects, and discussion of images of related work shared via email or in person. The material will be taught as needed but as much as possible will be front loaded at the
beginning of the semester. We may decide to learn to use the arduinos as a group in class so that we can help troubleshoot each other's work.

Cheating. A student may use any circuit they obtain from any source, any computer code or library from any source, or information from any source for this class with the exception of the quizzes which must be completed without notes or aids. Students are not required to understand the code in hardware libraries for the Arduino. They are expected to understand the code in their programs so that they can alter the code to their needs. Students may ask each other for help in any way to complete their assignments.

Safety. This is not an exhaustive list of concerns.

All work for this course must be done in a safe manner.

Any safety tests for the class will need to be passed in order to continue working in the class.

When possible electrical devices should be low voltage (under 15 volts) and power supplies should be low amperage. All homemade devices powered by more than 6 AA batteries must be protected with a fuse or similar device and turned off and disconnected from their power source when the building is unoccupied unless approved by the instructor.

Higher voltage devices require much more care. Discuss projects using over 15 volts, or 2 amps with your instructor before beginning physical work.

Time lapse photographic devices using store bought components set up in a manner approved by the instructor may generally be allowed 24 hours a day.

Installation art frequently requires interaction with and obtaining approval from owners, engineers, safety inspectors and others. The university is no different in this regard and if necessary for your art is part of the requirements for this course.

Installing or creating unsafe work or potentially unsafe work without permission may result in your removal from the course. Grade appeals will be handled by the normal grade appeal process. If you are removed from the class for safety reasons reinstating will require the approval of the campus safety officer and dean of students.

Students should get in the habit of practicing good hygiene when using electronic components and washing before eating (or smoking although giving this up would be better).