Advanced Information Assurance Fall 2012

Name of Instructor Mario A. Garcia
Office: CI331
E-Mail: Mario.garcia@tamucc.edu
Course Number and Section: COSC 5379 001
Class meeting time and location MWF 11.00 – 11.50 BH 202
Office Hours: T TH 9.30 – 10.45 Office Telephone: 825 3478

Course Description
In this course the student will learn about some of the most advanced topics on Information Assurance. With the increase in computer related crimes, it is imperative to develop software and applications in a secure way. The objective of this course is to teach students the methodology to write secure code applying the Secure Software Engineering life Cycle. In addition, students will learn the most important vulnerabilities in the C++ programming language.

Students Learning Outcomes:
After completing this course, the student should be able to:
Have a higher-level understanding of how to write secure code by using the Secure Software Engineering Life Cycle.
1. Comprehend, apply, and implement Secure Software Requirements
2. Comprehend, apply, and implement Secure Software Design
3. Comprehend and apply Secure Software Implementation
4. Comprehend, apply, and implement Secure Software Testing
5. Comprehend, apply, and implement Vulnerabilities in C++

Course format:
Lecture will be once a week. The instructor will meet with teams during the other class meeting times. This meeting is mandatory. Blackboard will be used intensively for class discussion and class assignments.

Graded Activity

<table>
<thead>
<tr>
<th>Assessment Mechanism</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Programming Assignment: Detection of vulnerabilities in C++</td>
<td>10%</td>
</tr>
<tr>
<td>Team paper on Secure Programming</td>
<td>10%</td>
</tr>
<tr>
<td>Exam 1</td>
<td>20%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>20%</td>
</tr>
<tr>
<td>Exam 3</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>20%</td>
</tr>
</tbody>
</table>

Grading Scale

<table>
<thead>
<tr>
<th>Grade</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90-100%</td>
</tr>
<tr>
<td>B</td>
<td>80-89%</td>
</tr>
<tr>
<td>C</td>
<td>70-79%</td>
</tr>
<tr>
<td>D</td>
<td>60-69%</td>
</tr>
</tbody>
</table>
Grading Notes and Comments

Incompletes: An incomplete will only be granted in the case of serious illness. Written proof of the illness and a recommendation for an incomplete will be required from both the Dean of Students office as well as from a doctor. A grade of incomplete is never issued to give a student more time to complete assignments or improve a grade. The final determination as to whether or not an incomplete should be issued rests solely with the professor. Note: An 89 is a B.

*Notice to Students with Disabilities: Texas A&M University-Corpus Christi complies with the Americans with Disabilities Act in making reasonable accommodations for qualified students with disabilities. If you suspect that you may have a disability (physical impairment, learning disability, psychiatric disability, etc.), please contact the Services for Students with Disabilities Office, located in Driftwood 101, at 825-5816. If you need disability accommodations in this class, please see me as soon as possible.

**ACADEMIC ADVISING: The College of Science and Technology requires that students meet with an Academic Advisor as soon as they are ready to declare a major. The Academic Advisor will set up a degree plan, which must be signed by the student, a faculty mentor, and the department chair. The College's Academic Advising Center is located in Driftwood 203E, and can be reached at 825-3466.

*** Grade Appeal Process. As stated in University Rule 13.02.99.C2, Student Grade Appeals, a student who believes that he or she has not been held to appropriate academic standards as outlined in the class syllabus, equitable evaluation procedures, or appropriate grading, may appeal the final grade given in the course. The burden of proof is upon the student to demonstrate the appropriateness of the appeal. A student with a complaint about a grade is encouraged to first discuss the matter with the instructor. For complete details, including the responsibilities of the parties involved in the process and the number of days allowed for completing the steps in the process, see University Rule 13.02.99.C2, Student Grade Appeals, and University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures. These documents are accessible through the University Rules Web site at http://www.tamucc.edu/provost/university_rules/index.html. For assistance and/or guidance in the grade appeal process, students may contact the Office of Student Affairs.

Texts

Reading Support
3. Secure Coding in C and C++ Robert C. Seacord
COURSE OUTLINE

Week 1
First part: Secure Software Engineering Book 2

Why Is Security a Software Issue?

1.1 Introduction
1.2 The Problem
1.2.1 System Complexity: The Context within Which Software Lives
1.3 Software Assurance and Software Security
1.3.1 The Role of Processes and Practices in Software Security
1.4 Threats to Software Security
1.5 Sources of Software Insecurity
1.6 The Benefits of Detecting Software Security Defects Early
1.6.1 Making the Business Case for Software Security: Current State
1.7 Managing Secure Software Development
1.7.1 Which Security Strategy Questions Should I Ask?
1.7.2 A Risk Management Framework for Software Security
1.7.3 Software Security Practices in the Development Life Cycle

Chapter 1: Why you need to learn secure programming? Book 3

Week 2

2.1 Introduction
2.2 Defining Properties of Secure Software
2.2.1 Core Properties of Secure Software
2.2.2 Influential Properties of Secure Software
2.3 How to Influence the Security Properties of Software
2.3.1 The Defensive Perspective
2.3.2 The Attacker’s Perspective
2.4 How to Assert and Specify Desired Security Properties
2.4.1 Building a Security Assurance Case
2.4.2 A Security Assurance Case Example
2.4.3 Incorporating Assurance Cases into the SDLC
2.4.4 Related Security Assurance and Compliance Efforts
2.4.5 Maintaining and Benefitting from Assurance Cases

Chapter 2: Coding in the SDLC: Not a solitary Practice (Book 3)

Week 3

Requirements Engineering for Secure Software

3.1 Introduction
3.1.1 The Importance of Requirements Engineering
3.1.2 Quality Requirements
3.1.3 Security Requirements Engineering
3.2 Misuse and Abuse Cases
3.2.1 Security Is Not a Set of Features
3.2.2 Thinking About What You Can’t Do
3.2.3 Creating Useful Misuse Cases
3.2.4 An Abuse Case Example
3.3 The SQUARE Process Model
3.3.1 A Brief Description of SQUARE
3.3.2 Tools
3.3.3 Expected Results
3.4 SQUARE Sample Outputs
3.4.1 Output from SQUARE Steps
3.4.2 SQUARE Final Results
3.5 Requirements Elicitation
3.5.1 Overview of Several Elicitation Methods
3.5.2 Elicitation Evaluation Criteria
3.6 Requirements Prioritization
3.6.1 Identify Candidate Prioritization Methods
3.6.2 Prioritization Technique Comparison
3.6.3 Recommendations for Requirements Prioritization

Chapter 3: Principles of Security and Quality Book 3

Week 4 - Secure Software Architecture and Design – Book 2

4.1 Introduction
4.1.1 The Critical Role of Architecture and Design
4.1.2 Issues and Challenges
4.2.1 Software Characterization
4.2.2 Threat Analysis
4.2.3 Architectural Vulnerability Assessment
4.2.4 Risk Likelihood Determination
4.2.5 Risk Impact Determination
4.2.6 Risk Mitigation Planning
4.2.7 Recapping Architectural Risk Analysis
4.3.1 Security Principles
4.3.2 Security Guidelines
4.3.3 Attack Patterns

Chapter 4 Getting Organized: What to do on day one (book 3)

Week 5 Exam 1
Week 6 Considerations for Secure Coding and Testing
5.1 Introduction
5.2 Code Analysis
5.2.1 Common Software Code Vulnerabilities
5.2.2 Source Code Review
5.3 Coding Practices
5.3.1 Sources of Additional Information on Secure Coding
5.4 Software Security Testing
5.4.1 Contrasting Software Testing and Software Security Testing
5.4.2 Functional Testing
5.4.3 Risk-Based Testing
5.5 Security Testing Considerations Throughout the SDLC
5.5.1 Unit Testing
5.5.2 Testing Libraries and Executable Files
5.5.3 Integration Testing
5.5.4 System Testing
5.5.5 Sources of Additional Information on Software Security Testing

Chapter 5 Software requirements: Hear what they say, Know what they mean, Protect what they own

Week 7 Security and Complexity: System Assembly Challenges

6.1 Introduction
6.2 Security Failures
6.2.1 Categories of Errors
6.2.2 Attacker Behavior
6.3 Functional and Attacker Perspectives for Security Analysis: Two Examples
6.3.1 Web Services: Functional Perspective
6.3.2 Web Services: Attacker’s Perspective
6.3.3 Identity Management: Functional Perspective
6.3.4 Identity Management: Attacker’s Perspective
6.3.5 Identity Management and Software Development
6.4 System Complexity Drivers and Security
6.4.1 Wider Spectrum of Failures
6.4.2 Incremental and Evolutionary Development
6.4.3 Conflicting or Changing Goals Complexity
6.5 Deep Technical Problem Complexity

Chapter 6: Design for Quality: The big picture

Week 8 - Governance, and Managing for More Secure Software

7.1 Introduction
7.2 Governance and Security
7.2.1 Definitions of Security Governance
7.2.2 Characteristics of Effective Security Governance and Management
7.3 Adopting an Enterprise Software Security Framework
 7.3.1 Common Pitfalls
 7.3.2 Framing the Solution
 7.3.3 Define a Roadmap
7.4 How Much Security Is Enough?
 7.4.1 Defining Adequate Security
 7.4.2 A Risk Management Framework for Software Security
7.5 Security and Project Management
 7.5.1 Project Scope
 7.5.2 Project Plan
 7.5.3 Resources
 7.5.4 Estimating the Nature and Duration of Required Resources
 7.5.5 Project and Product Risks
 7.5.6 Measuring Software Security
7.6 Maturity of Practice
 7.6.1 Protecting Information
 7.6.2 Audit’s Role
 7.6.3 Operational Resilience and Convergence
 7.6.4 A Legal View
 7.6.5 A Software Engineering View
 7.6.6 Exemplars

Chapter 7 – Design for Security

Week 9 Midterm Exam

Week 10 Secure Software Development - Jason Grembi

Part 2: Secure Coding in C and C++

Chapter 1. Running with Scissors.
 Gauging the Threat
 Security Concepts
 C and C++
 Development Platforms

Chapter 8: Development tools: Choose Wisely

Week 11 - Chapter 2. Strings.
 String Characteristics
 Common String Manipulation Errors
 String Vulnerabilities
 Process Memory Organization
 Stack Smashing
 Code Injection
Chapter 9 – Coding in the Cube: Developing good habits

Week 12 Chapter 5. Integer Security.
Integers
Integer Conversions
Integer Error Conditions
Integer Operations
Vulnerabilities
Nonexceptional Integer Logic Errors
Mitigation Strategies
Notable Vulnerabilities

Chapter 10 – Testing for quality and security

Week 13 Chapter 6. Formatted Output.
Variadic Functions
Formatted Output Functions
Exploiting Formatted Output Functions
Stack Randomization
Mitigation Strategies
Notable Vulnerabilities

Chapter 11: maintain your software

Week 14 - Recommended Practices.
Secure Software Development Principles
Systems Quality Requirements Engineering
Threat Modeling
Use/Misuse Cases
Architecture and Design
Off-the-Shelf Software
Compiler Checks
Input Validation
Data Sanitization
Static Analysis
Quality Assurance
Memory Permissions
Defense in Depth
TSP-Secure

Week 15 – 16 Project Work
Analysis Duties
Mission
Discuss information system support mission

Documentation
Policies
Explain applicable national level policies
Discuss agency/local guidance

Threat and Adversary Analysis
Risk Assessment (Environment and threat description)
:Mission
Discuss current mission and role of information system in supporting mission
Determine if an adverse system finding should be allowed to halt mission support operations
Agency-Specific Policies and Procedures
Discuss local policies and procedures implementing regulations, laws, and procedures in local environment

Vulnerabilities and Attack Avenues Analysis
Mission
Support organizational mission in conjunction with vulnerabilities and attack venues
Risk of Detection and Response
Characterize impact of security breaches and estimate an attacker's probable Response
Technology Necessary to Mount an Attack
Describe technology needed to mount an attack based on existing countermeasures

Technology
Applications Security
Discuss state of security features embedded in commercial-off-the-shelf (COTS) products in relation to risk management plan
Technology Trends
Summarize technology trends in context of future security management plan

Final Exam – Project and paper Presentation

Research Paper. The research paper must follow the IEEE conference template (2 columns, single space, times new roman 10, etc). It must contain: Title, Abstract, Introduction, Conclusion, and Bibliography. Turnitin will be used to check percentage of direct copy. 20% is allowed.