SMTE 1351: Fundamentals of Math II

Section 001, summer 2013, CRN: 89388

I. COURSE INFORMATION

Instructor: Sarah Ives, Ph.D.
E-mail: sarah.ives@tamucc.edu
Webpage: http://faculty.tamucc.edu/sives
Office location: Center for Instruction #358
Office phone: 361-825-2151
Student hours: Tues, Wed, Thurs 12-2pm; also by appointment
Meeting time & place: MTWR, 2-3:55pm, CS 107

II. COURSE DESCRIPTION

The conceptual framework for understanding and applying properties, models and operations related to various data systems in problem solving settings.

This research-based course provides the conceptual framework for increased understanding and application of rational numbers, probability, and statistics. Communicating concepts, processes or solutions effectively, in oral and written forms, will be emphasized. Using physical models to teach the content topics and understanding how learning occurs through their use will be a substantial portion of the class instructional plan.

The course will cover chapters 7, 13, and 14 in the textbook.

III. PREREQUISITES for the COURSE

MATH 1314: College Algebra or equivalent
SMTE 1350: Fundamentals of Math I

IV. TEXTBOOKS and OTHER READINGS

Required:

- Scientific calculator
- Texas Essential Knowledge & Skills (free online)
- Principles and Standards for School Mathematics, NCTM, 2000 (free trial online)
- Regular access to high speed internet and office applications (e.g., MS Word, Excel)

Suggested:

- *Elementary and Middle School Mathematics*, Van de Walle, 7th edition

V. STUDENT LEARNING OUTCOMES

A student will –

Rational & irrational numbers

- Define and distinguish between rational and irrational numbers
• Recognize that situations that have no solution in the rational number system have solutions in the real number system

Decimals
• Demonstrate a sense of quantity, relationship, and equivalency for fractions, decimals and percents
• Identify face/place values and expanded form for decimal numbers
• Determine when zero is a significant/insignificant digit
• Model decimals using decimal grids (area models)
• Model binary operations on decimals using decimal grids (area models)
• Analyze common error patterns for operations on decimals
• Explain and justify traditional algorithms for binary operations on decimals
• Convert between fraction, decimal, and percent form for rational numbers
• Appropriately round decimals to a given place value
• Order a set of decimals from smallest to greatest
• Find at least two decimals between a given pair of decimals

Percent
• Convert between fraction, decimal, and percent form for rational numbers
• Calculate and explain percent change (percent increase and percent decrease)
• Model percent using decimal grids
• Recognize, interpret, and evaluation appropriateness of percents less than 1% and greater than 100%

Ratio & proportion
• Model and solve proportional problems using concrete, numeric, tabular, graphic and algebraic methods

Exponents & roots
• Simplify roots and approximate roots using a calculator
• Apply operations and properties of exponents and roots for rational numbers

Probability
• Describe and compute the outcome of simple and compound events
• Explore concepts of probability through data collections, experiments & simulations
• Create, use and interpret tree diagrams for simple, conditional and joint probabilities
• Compute odds and convert to/from probabilities
• Compute permutations and combinations for real-world scenarios

Statistical graphs
• Investigate and answer questions by collecting, organizing and displaying data from real-world situations
• Support arguments, make predictions and draw conclusions using summary statistics and graphs to analyze and interpret one-variable data
• Communicate the results of a statistical investigation using appropriate language
• Design, conduct, analyze and interpret surveys and statistical experiments
• Create and interpret graphs (pie graph, pictograph, bar graph, histogram, line plot, line graph, map chart, frequency polygon, stem & leaf plot, scatterplot) to communicate mathematical information
• Approximate the line of regression on a scatterplot and explain the trend
• Show awareness of quality graphs and possible abuses of statistical graphs

Statistical measures
• Describe and compute measures of centrality (mean, median, mode) and measures of dispersion (range, IQR, variance, standard deviation)

Normal curve
• Use the graph of the normal distribution to make inferences about a population
• Compute and interpret z-scores and percentiles for a given data set
• Compare two data sets using z-scores

In the context of the above expectations, a student will --

Mathematical Processes
• Recognize that a mathematical problem can be solved in a variety of ways, evaluate the appropriateness of various strategies, and select an appropriate strategy for a given problem
• Evaluate the reasonableness of a solution to a given problem
• Use physical and numerical models to represent a given problem or mathematical procedure
• Recognize that assumptions are made when solving problems and identify and evaluate those assumptions

Mathematical Perspectives
• Understand and apply how mathematics progresses from concrete to representation to abstract generalizations

Communication
• Communicate mathematical ideas and concepts in age-appropriate oral, written and visual forms for a class presentation
• Use mathematical processes to reason mathematically, solve mathematical problems, make mathematical connections within and outside of mathematics, and communicate mathematically
• Reflect on personal learning, change of attitude and beliefs, and growth in understanding through mathematical journaling
• Translate mathematical statements among developmentally appropriate language, standard English, mathematical language, and symbolic mathematics

Technology
• Use appropriate technology such as calculators, computer software, and the Internet to explore, research, solve, create and compare mathematical situations and representations

Professional Development
• Be familiar with the National Council of Teachers of Mathematics and the Principles and Standards for School Mathematics, the NCTM website, and NCTM journals
VI. INSTRUCTIONAL METHODS and ACTIVITIES

The course will be a combination of lectures, individual work, and group work. Students are expected to participate in group and whole class discussions by contributing with knowledge and thoughtful evaluation of the contribution of others. Using physical models to teach the content topics, and understanding how learning occurs through their use, will be a substantial portion of the class instructional plan.

VII. MAJOR COURSE REQUIREMENTS and ASSESSMENTS

The final course grade will be a weighted average of scores in four categories:

Core Skills Proficiency: 10%
Classwork and Homework: 30%
Teaching Project: 30%
Exams: Two tests and Final (10% each): 30%

Final course grades will be rounded to the nearest percent. Final grades ≥ 90% will result in a letter grade of A. Final grades ≥ 80% will result in at least a letter grade of B; final grades ≥ 70% will result in at least a C; final grades ≥ 60% will result in at least a D; and final grades <60% will result in an F.

Core Skills Exam – show proficiency in the core elementary procedures used in the course by correctly completing 100% of the exercises on the Core Skills Exam. The exam is graded “all or nothing,” but can be taken up to 3 times.

Classwork and Homework – includes individual, collaborative and cooperative group work, reflections, in-class discussion, readings, written assignments, worksheets, and (announced and unannounced) quizzes.

Teaching Project – To gain experience teaching data and probability concepts, you will be presenting a lesson from NCTMs Illuminations. Assignment details and evaluation criteria will be provided within the first week of the class.

Final Exam – comprehensive summative evaluation of students’ individual content knowledge. This 2 ½ hour exam is scheduled by the university and may not be retaken or made-up if missed. Any student missing the final exam for any reason will get a score of 0. Any excused absences from the final may be made up in the next semester by eligible students. A grade of I will be temporarily assigned.

» The final exam is officially scheduled for Friday, July 5th, 2:00am-3:55pm.
VIII. COURSE OUTLINE (tentative)

<table>
<thead>
<tr>
<th>Day</th>
<th>TOPIC</th>
<th>CONTENT</th>
<th>SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>Pre-assessment; review of real numbers, Face/place value, expanded form</td>
<td>7.1</td>
</tr>
<tr>
<td>2</td>
<td>Decimal numbers</td>
<td>conversion to/from fractions</td>
<td>7.1</td>
</tr>
<tr>
<td>3</td>
<td>Decimal numbers</td>
<td>Modeling decimals, decimal operations</td>
<td>7.2</td>
</tr>
<tr>
<td>4</td>
<td>Ratio & proportion</td>
<td>Proportional reasoning</td>
<td>7.3</td>
</tr>
<tr>
<td>5</td>
<td>Ratio & proportion</td>
<td>Proportional reasoning</td>
<td>7.3</td>
</tr>
<tr>
<td>6</td>
<td>Percent</td>
<td>Percent, percent change; conversion to/from fractions & decimals</td>
<td>7.4</td>
</tr>
<tr>
<td>7</td>
<td>Number & ratio</td>
<td>Review decimals, ratio & proportion, percent</td>
<td>7.1-4</td>
</tr>
<tr>
<td>8</td>
<td>Decimals and Proportional Reasoning Exam</td>
<td></td>
<td>7.1-4</td>
</tr>
<tr>
<td>9</td>
<td>Statistical graphs</td>
<td>Review Exam, Graphs of discrete & continuous data</td>
<td>13.1</td>
</tr>
<tr>
<td>10</td>
<td>Statistical graphs</td>
<td>Constructing & reading graphs, Interpreting graphs, abuse of graphs</td>
<td>13.1</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Teaching Presentations</td>
<td>13.1</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Teaching Presentations</td>
<td>13.2</td>
</tr>
<tr>
<td>13</td>
<td>Measures</td>
<td>Measures of centrality & dispersion</td>
<td>13.2</td>
</tr>
<tr>
<td>14</td>
<td>Normal curve</td>
<td>Normal curve, z-scores & percentiles</td>
<td>13.3</td>
</tr>
<tr>
<td>15</td>
<td>Normal curve</td>
<td>Normal curve, z-scores & percentiles</td>
<td>13.3</td>
</tr>
<tr>
<td>16</td>
<td>Data analysis</td>
<td>Statistical Graphs and Measures Exam</td>
<td>13.1-3</td>
</tr>
<tr>
<td>17</td>
<td>Probability</td>
<td>Simple, conditional, joint probability, Combinatorial counting</td>
<td>14.1, 14.2</td>
</tr>
<tr>
<td>18</td>
<td>Permutations, Combinations</td>
<td>Combinatorial counting; Tree diagrams, odds</td>
<td>14.3, 14.4</td>
</tr>
<tr>
<td>19</td>
<td>Review</td>
<td>Comprehensive review for final</td>
<td>Ch. 7, 13, 14</td>
</tr>
<tr>
<td>20</td>
<td>(Comprehensive)</td>
<td>Final exam</td>
<td>Ch. 7, 13, 14</td>
</tr>
</tbody>
</table>

IX. CLASS POLICIES

Attendance/Tardiness. Attendance is expected and is reflected in class participation. If you must be tardy or absent, please contact me (e.g., by email) before class or as soon as possible.

Late Homework. Homework will usually be due at the beginning of class, but may be submitted later if the student requests an extension prior to the deadline. The instructor may enforce strict deadlines on some assignments by announcing a “hard deadline.” Partial credit on submissions after hard deadlines will be assigned at the instructor’s discretion.
Exams. You must attend the final exam, so please plan accordingly. Description of exam content and review material will be available on the course website. Please contact the instructor if you think you are in need of alternate testing conditions.

Cell Phones/Electronic Devices. Please silence electronic devices during class and step out of class to use them. You may not use any personal electronic device during exams.

Written Work. Good writing skills are important in this class. Please type and proof-read your written assignments. The Writing Center is available for help with written assignments.

In-Class Discussion. Everyone in the class is encouraged to express personal views with an emphasis on evidence-based claims. We have diverse backgrounds and perspectives, but by maintaining a spirit of mutual respect and acknowledgement, the hope is that classroom discussion will be inviting, lively, and informative.

Dropping a class. I hope that you never find it necessary to drop this or any other class. However, events can sometimes occur that make dropping a course necessary or wise. Please consult with me before you decide to drop to be sure it is the best thing to do. Should dropping the course be the best course of action, you must initiate the process to drop the course by going to the Student Services Center and filling out a course drop form. Just stopping attendance & participation WILL NOT automatically result in your being dropped from the class. Friday, Nov. 2nd is the last day to drop a class with an automatic grade of “W” this term.

Academic integrity. University students are expected to conduct themselves in accordance with the highest standards of academic honesty. Academic misconduct for which a student is subject to penalty includes all forms of cheating, such as illicit possession of examinations or examination materials, falsification, forgery, complicity or plagiarism. (Plagiarism is the presentation of the work of another as one’s own work.) In this class, academic misconduct or complicity in an act of academic misconduct on an assignment or test will result in a minimum of a 0 on the assignment or test.

Disabilities Accommodations. The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please call or visit Disability Services at (361) 825-5816 in Corpus Christi Hall, Room 116.

Veterans. If you are a returning veteran and are experiencing cognitive and/or physical access issues in the classroom or on campus, please contact the Disability Services office for assistance at (361) 825-5816.

Grade appeals process. As stated in University Rule 13.02.99.C2, Student Grade Appeals, a student who believes that he or she has not been held to appropriate academic standards as outlined in the class syllabus, equitable evaluation procedures, or appropriate grading, may appeal the final grade given in the course. The burden of proof is upon the student to demonstrate the appropriateness of the appeal. A student with a complaint about a grade is encouraged to first discuss the matter with the instructor. For complete details, including the responsibilities of the parties involved in the process and the number of days allowed for completing the steps in the process, see University Rule 13.02.99.C2, Student Grade Appeals, and University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures. These documents are accessible through the University Rules Web site at tamucc.edu/provost/university_rules. For assistance and/or guidance in the grade appeal process, students may contact the Office of Student Affairs.
Classroom Behavior. Texas A&M University-Corpus Christi, as an academic community, requires that each individual respect the needs of others to study and learn in a peaceful atmosphere. Under Article III of the Student Code of Conduct, classroom behavior that interferes with either (a) the instructor’s ability to conduct the class or (b) the ability of other students to profit from the instructional program may be considered a breach of the peace and is subject to disciplinary sanction outlined in article VII of the Student Code of Conduct. Students engaging in unacceptable behavior may be instructed to leave the classroom. This prohibition applies to all instructional forums, including classrooms, electronic classrooms, labs, discussion groups, field trips, etc.

Changes. The instructor may amend the syllabus at any time prior to the final exam by announcing the changes in class.