BIOL4590.103 BIOLOGY OF MARINE MAMMALS LABORATORY

Date and Time: Fri. 8:00-10:50 or 12:00 -02:50 PM
Location: TBA

INSTRUCTOR: Dr. Andreas Fahlman (Ph.D.)
Office: Harte Research Institute (HRI)-121
Office Phone: (361) 825-3489
E-mail: andreas.fahlman@tamucc.edu
Office Hours: Wednesday: 8:00-11:00, Tuesday and Thursday 10:00-11:00 AM;

Students may make appointments to see me or at times other than those listed above. If I am unavailable or need to relocate during office hours, I will post a note on the door. I will only correspond by e-mail with students who use their official “islander” e-mail addresses.

COURSE DESCRIPTION: This course complements BIOL 4319, Marine Mammals, and gives students hands on experience with marine mammal research. Students will explore different topics in the field of ecology, behavior, communication, physiology and anatomy. Students will introduces students to the life history, evolution, physiology and ecology of marine mammals. Students will study the evolution of the various taxa of marine mammals, the differences in foraging behavior (benthic vs. pelagic, plankton vs. fish), ecology and physiology (diving, thermoregulation, water balance, locomotion, vision and acoustics) between and among species and taxa. The student will also study the history of whaling and marine mammal conservation.

STUDENT LEARNING OUTCOMES: The objective of this course is to provide students with a basic understanding of a selected number of research topics in the field of marine mammal biology. Students are required to attend and participate in the laboratory sections, read the assigned material, and mentally organize information from their instructors, and their readings. The laboratory section is meant to give the student a unique opportunity to experience marine mammals research first hand. It also give students hands-on experience to conduct data analysis, perform a necropsy and to develop their critical thinking, presentation and writing skills.

PREREQUISITES: BIOL 4319 (Marine Mammals) is required.

REQUIRED LABORATORY MANUAL: There is no required laboratory manual for this course. However, each student is expected to acquire a student version of Matlab to be used for the data analysis in the laboratory section of this course.

REQUIRED E-MAIL: All students must have a Texas A&M University-Corpus Christi e-mail account (“islander” account; the address usually follows the format: flast@islander.tamucc.edu). Make sure that you can access and use it because, for students in my classes, it is the only e-mail address to which I will reply. If you have not done so, please go to http://www.tamucc.edu/ise.html to obtain a new islander account.
BIOL4590.103 BIOLOGY OF MARINE MAMMALS LABORATORY

Marine Mammal Lab Tentative Schedule

Week 1
- Intro to Lab
 - Basic anatomy and terminology
 - Sign up for theodolite tracking schedule
 - Sign up for Module presentations
 - Make up research/lab groups of 3-4 people in each group

Week 2
- Photo ID lesson
 - Photo ID matching
 - Proper photography technique lesson & practice

Week 3
- Theodolite tracking introductory laboratory on campus

Week 4
- Theodolite tracking at Copano Bay or Port Aransas

Week 5
- Preparation for Necropsy with students
 - Proper sampling techniques, photography, data recording

Week 6
- Necropsy with Veterinarian

Week 7
- Lab Report 1 (photo id and theodolite tracking) due
 - Importance of data management
 - In-lab assistance with necropsy lab report write-up

Week 8
- Dive data analysis lesson
 - Lab Report 2 (necropsy) due

Week 9
- Special guest and activities

Week 10
- Dive data analysis continued
 - In-lab assistance with dive data lab report write-up

Week 11
- Marine Mammal Acoustics
 - Listening to marine mammal recordings

Week 12
- Spectrograms analysis
 - Lab Report 3 (dive data analysis) due

Week 13
- Spectrograms analysis continued
 - In-lab Spectrograms analysis assistance with lab report write-up
 - Journal readings for “Ocean noise” assigned

Week 14
- Lab Report 4 (acoustics) due
 - Final student Module presentations
Laboratory Module Description
The laboratory portion of this course contains several modules that give the student a wide exposure to different topics about marine mammals. It also teaches them skills that marine biologists studying marine mammals would use in the field and laboratory. Each module will be graded and the average of the two highest grades will be the final grade for the laboratory section of the course. Students have to write a short laboratory for three out of the four modules and one longer report in the format of a scientific paper. Information about this paper will be given during the first meeting. The laboratory portion supplements the course work. In particular, the focus is to enhance the student’s critical thinking, presentation, data analysis, and writing skills.

Module 1: Photo ID and theodolite tracking
Students will be introduced to photo identification of marine mammals and its use in the field. An important part of this is learning basic anatomy and terminology for describing parts of the body. Students will be sorted into groups and given a series of photographs of the flukes, dorsal fins, and other areas of the body with notches and scars that would lead to an animal ID. While there will be several photos of animals, many of the same animals will be in more than one photograph, but with different lighting/contrast/angle, etc. The students will be asked to match and identify each animal. Additionally, students will be shown the proper way to take photos for the purpose of animal identification and be given the opportunity to practice that technique during the lab.

For theodolite tracking, students will be in groups and schedule times to visit either Copano Bay or Port Aransas (near the ferry) where sightings of cetaceans are common. They will be asked to perform theodolite tracking techniques and record weather conditions, angle of the animal to a reference point over a period of time, speed and direction of movement, number of animals present, etc. They must create a map of the animal’s trajectory and attempt to obtain photographs (as learned in photographs id lab).

Module 2: Necropsy
Students will learn the importance of the necropsy and its proper technique and will utilize the anatomy and terminology learned from previous labs. Sampling, photographing, and recording observations are crucial skills that students will obtain in this module. Additionally, students will have first-hand experience of the differences between the human anatomy to which they have grown accustomed to learning and the anatomy of cetaceans and pinnipeds that make them uniquely adapted to their aquatic environment. Here the lessons from the lecture will become a hands-on experience. The students will be required to attend a necropsy performed by a local marine mammal veterinarian. They will be encouraged to ask questions and participate in data collection. If there is only one animal available, then the veterinarian will ask for volunteers to weigh organs, or identify anomalies, etc. Students will take turns learning to weigh, measure, describe and photograph the organs, tissues, and samples taken during the necropsy. The class will take down all data collected from the necropsy and will individually be responsible for writing a lab report. If more than one animal, students gather in small groups and are guided by veterinarian and TA.
BIOL4590.103 BIOLOGY OF MARINE MAMMALS LABORATORY

The importance of data management, observations and experiences obtained by the students when collecting data for the theodolite tracking will be stressed and crucial when writing the lab reports.

Module 3: Data management and analysis of dive data
Students will work in groups to properly analyze the data (with in-lab guidance from TA) and write a lab report to turn in findings. Students will be taught the importance of data management and how to analyze dive data collected when studying marine mammals. In the first class, students will learn the basics how to use Matlab. Matlab will be the software program to be used for all analysis. Each group will be given dive data sets from different species, e.g. sperm whales, beaked whales, elephant seals, Weddell seals etc. Each dive data set will be analyzed using simple functions written by the student, e.g. correction of baseline/surface, converting pressure to depth etc. Other functions will be supplied to allow the students to determine total number of dives, average dive duration, dive depth, maximum dive depth etc. Groups will compare and contrast their results and make suggestions how species differ.

Module 4: Acoustics
Students will be taught the history of marine mammal acoustic research, its current findings, and its importance. During the lab students will work in groups and be given audio recording files. The audio recording files will be analyzed using spectrograms. A spectrograms is a visual representation of the spectrum of frequencies in a sound. Students will learn how to decompose the sounds into its frequency components over time and learn to correlate those sounds to a species and or behavior. Students will compare the spectrograms made for different activities, e.g. social calls, foraging etc, within and between species. Students will also participate in live discussion/debate about whether the US Navy and is use of sonar has an effect on marine mammals. Peer-reviewed journal readings will be assigned for students in order to prepare for the discussion.

Each module will require a lab report and for at least one module the student will have to present their results.

FINAL GRADING: Your final letter grade will be based on the points you earn in the laboratory. The final grading scale will also be determined at the end of the semester, but the cut-off for each grade will be no higher than the following:

- A ≥ 90%
- B ≥ 80%
- C ≥ 70%
- D ≥ 60%
- F

Final course grades will be determined by the following:

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory participation</td>
<td>25%</td>
</tr>
<tr>
<td>Laboratory reports/homework</td>
<td>25%</td>
</tr>
<tr>
<td>Term paper (research project)</td>
<td>25%</td>
</tr>
<tr>
<td>Research project presentation</td>
<td>25%</td>
</tr>
</tbody>
</table>

100%
EXAMINATIONS There are no examinations in this course. You will be graded on participation, the grade on your laboratory reports and presentation. Extra credits—the instructor may choose a variety of formats for the extra credits (an additional 5% of the total grade). These may include quizzes and home-work assignments.

RESEARCH PROJECT:
Each lab group (composed of no more than four individuals) will be required to conduct a research project during the semester and will complete both a paper and an oral presentation for that project (see below). For the paper, a detailed guideline is given below and it is expected that the students familiarize themselves with the scientific literature as part of the research project. The research project should be a detailed analysis and synthesis of the data that is collected or analyzed for one of the modules. Each group will pick one module for the research project and begin background research about that topic. A hypothesis should be formulated early so that each group have a clearly defined goal with the project.

When working on the group research project and presentation, the workload should be evenly distributed between each member of the group. It is vital that each group member do his/her equal share. It is expected that group members will work together. It is the responsibility of each student to get to know each member of their group and to obtain appropriate information about contacting group members outside of lab. Problems that arise must be worked out within the group if at all possible. If one or more of the group members are not performing to the others’ satisfaction, it is up to the group to document the nonparticipation.

To resolve problems within the group:
1) Try to compromise as a way to work out the problems amongst yourselves.
2) If that doesn’t work, bring the problem to the attention of the TA as soon as possible along with documentation of the issues, and a plan of action as to how the problem(s) should be resolved.
3) Schedule a group meeting with the TA to discuss the problem. This meeting must take place before October 18, 2011.
4) If the meeting does not solve the problem, with the TA’s permission, the group member may be expelled. If the member is not expelled by October 25, 2011, the group is stuck with the problem.
5) A member who is expelled must complete a project, paper and presentation on their own or receive a 0 for the project (both the paper and the presentation). Again, this is up to the group. The TA or Dr. Fahlman cannot initiate this action.
6) Keep in mind that each group member will anonymously evaluate each member of his/her own group. Students receiving less than satisfactory scores from other members of the group may receive significantly lower grades on the paper and/or presentation.

The objective with the research project is to give the students experience with the scientific method. The scientific method is a step-by-step process for asking questions, developing explanations, and testing those explanations against the reality of the natural world. There are five (5) main interrelated operations (steps) in this method: observation, question, hypothesis, prediction and test.
BIOL4590.103 BIOLOGY OF MARINE MAMMALS LABORATORY

Step 1 Observation: All scientific inquiry begins with observing a specific phenomenon in the natural world.

Step 2 Question: These observations lead to a question, such as "How did that happen?"

Step 3 Hypothesis: A hypothesis is formulated in answer to the question. A hypothesis is a possible explanation, a preliminary conclusion, or even an educated guess as to the solution to the problem. To be useful, a hypothesis must be testable by experimentation or further observations. The hypothesis must be tested in a way that allows it to be proven false. We can never prove that a hypothesis is true, but we can support the hypothesis if repeated experiments do not find it false.

Step 4 Prediction: Typically the prediction is phrased in an "if...then" form. If this happens then logically that will happen.

Step 5 Test: The test stage or experimentation process can include further observations or the testing of the hypothesis against a known situation or element (control). In order to ensure validity of the experiment replicating the experiment is necessary. The results of the experimentation should either support or refute (disprove) the hypothesis. Once the experiment has been concluded, a conclusion is drawn about the validity of the hypothesis. If the hypothesis is refuted then the hypothesis is revised or a new one is formed. If the hypothesis is supported additional predictions can be made and tested.
RESEARCH PROJECT PRESENTATION GRADING GUIDELINES:
This portion of the presentation grade (the actual oral presentation) is worth 100 points (15% of the total grade). The TA and Professor and/or one external reviewer will critique each group. The grades given by the review panel will be averaged. It is expected that all members of a research group participate in the presentation and in case of unexcused absence, points will be deducted from the entire group.

1. DELIVERY (25 POINTS) - The points will be divided between participants. Includes: Personal appearance, attitude, delivery, demeanor, use of the monitor as a prompt instead of the screen (POINTS WILL BE DEDUCTED FROM STUDENTS USING NOTE CARDS OR READING FROM ANY SOURCE), etc...

2. CONTENT/KNOWLEDGE OF SUBJECT (75 POINTS) - The points will be divided between participants and all group members are required to participate. Includes how well each person knows the material, how well they answer questions, etc.

RESEARCH PROJECT POWER POINT GRADING GUIDELINES

<table>
<thead>
<tr>
<th>POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELIVERY</td>
</tr>
<tr>
<td>Attitude and posture (look at audience, personal appearance etc):</td>
</tr>
<tr>
<td>Oral delivery (no reading)</td>
</tr>
<tr>
<td>CONTENT/KNOWLEDGE OF SUBJECT</td>
</tr>
<tr>
<td>Title: Key words that describe experiment, authors, course, date</td>
</tr>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>discussion of the problem and hypothesis stated</td>
</tr>
<tr>
<td>adequate & appropriate background information</td>
</tr>
<tr>
<td>professional and clear wording, appropriate amount of information</td>
</tr>
<tr>
<td>material pertinent to the research</td>
</tr>
<tr>
<td>material correctly cited on all slides</td>
</tr>
<tr>
<td>Material and Methods</td>
</tr>
<tr>
<td>adequate and appropriate information (content and volume) presented</td>
</tr>
<tr>
<td>professional formatting</td>
</tr>
<tr>
<td>text past tense on slide</td>
</tr>
<tr>
<td>correct procedure adequately covered</td>
</tr>
<tr>
<td>Results</td>
</tr>
<tr>
<td>data formatted correctly, appropriate for material</td>
</tr>
<tr>
<td>data readable</td>
</tr>
<tr>
<td>Adequate and appropriate information (content and volume) presented</td>
</tr>
</tbody>
</table>
BIOL4590.103 BIOLOGY OF MARINE MAMMALS LABORATORY

text: past tense	1
Discussion	10
conclusion(s) stated & reason(s) given	4
supporting information correctly cited on slide	2
ties back to material in Introduction	4
restated results (-5 points)	

References	5
appropriate references (those cited in the presentation)	2
correct format	1
all figures and photos cited correctly	1
consistent formatting of all references in the Literature Cited section	1

| Answers to questions/knowledge | 25 |

| TOTAL POSSIBLE POINTS | 100 |

RESEARCH PAPER INFORMATION

Each group should write one research paper that describes the research project. The research paper should follow the standard formatting used for peer-reviewed published papers. While these differ, sometimes considerably, between journals we will use the standards for a journal called Respiratory Physiology & Neurobiology. The choice of this journal is to standardize the formatting for all papers and as the Information Pack, (a pdf file) that provides a detailed Guide for Authors, is very detailed. The Guide can be found at the following website: http://www.elsevier.com/wps/find/journaldescription.cws_home/622727/authorinstructions

The paper should be written as an original research article as outlined in the Guide. While this journal does not limit the number of pages, the body of the paper should be between 10 to 15 double-spaced pages (no larger than 12 pt. font, margins 1 inch). The paper should contain an introduction, a materials and methods section, a results section, a discussion, a reference list, and tables and figures. The 10 to 15-page body of the paper does NOT include the title page, abstract, references list, or tables and figures. This page limitation is the standard length of a published paper and to give students an idea of the amount of material required. The paper will be based on information gathered from a search of current research literature published in scientific, peer-reviewed journals, and on research conducted in lab. While books, abstracts, unpublished results or personal communication are sometimes used as a reference, their use should be limited and peer-reviewed articles should be used whenever possible.

RESEARCH PAPER GRADING GUIDELINES

The research paper grade (the actual oral presentation) is worth 25% of the total grade). The TA and Professor will evaluate each paper and averaged. It is expected that all members of a research group actively participate in writing the paper. The workload should be divided evenly among the group members.
The Guide for Authors (see above) should be used to determine the format of the paper. Scientific papers differ considerably from other forms of writing and it may take some time to get used to. The article published by Gopen and Swan (1990) is an excellent guide to scientific writing and highly recommended. The paper will be graded on content, language, formatting, and conclusions. While there may be many interpretations of the results, the conclusion(s) must be defended by actual results and be physiologically reasonable.

The following is a brief outline of the structure of a scientific paper. One common mistake is repetition of results in the discussion and vice versa. Try to avoid this as it makes the paper easier to read and reduces the length.

Title: Think long and hard about the title – it drives your thoughts as to the story you are trying to tell.

Abstract: It will generally write itself once the body of the paper is drafted. Simply pluck out the key words from the text once the rest of the paper is finished and string them together.

Introduction: There are 3 main sections 1) what is known, 2) what is not known 3) what are the unknowns you are trying to answer.

Material and Methods: The scientific method relies on the ability that someone else should be able to repeated the same experiment so be as detailed as necessary for someone else to do the same study. In short, what you did and how you did it.

Results: Describe the actual results as concisely as possible. Rather than creating a long list of items, consider using figures and tables. Often points that belong in the discussion creep in to the results. Don’t let this happen. Push them into a resource pile for use in the discussion.

Discussion: 1a) The first section of the discussion defines the paper. The first sentence of that paragraph encapsulates what you discovered, 2a) the subsequent sentences lay out a series of issues that need discussing in logical sequence: data quality, variables you could not control, alternative interpretations etc. Each sentence in that first paragraph defines a subsequent paragraph detailing each issue. Then at the end you wrap up with a conclusive paragraph telling the world what we now know that we did not before. Three sections again: 1) first a summary of what needs to be discussed, 2) then a series of paragraphs discussing each of those needs, and 3) then a wrap up.

References: Formatting the references should be done last and make sure that all the references cited in the text are in the reference list. There are software packages that makes life easier (Endnotes or Reference Manager). However, these are quite costly and require considerable effort to learn how to use, so manual insertion of the references is probably just as effective.

Tables and figures: Data are often presented in tables of figures rather than in the text. Both should have a legend that describes what they contain, and abbreviations. A common mistake is to include too many tables and figures. Try to organize data into averages and present only
BIOLOGY OF MARINE MAMMALS LABORATORY

those data that provide you with information to tell the story. A regular published paper generally contains about 1-4 tables and 2-6 figures. Any additional data is probably superfluous and should not be reported.

The following is a grading guideline for each section:

1. TITLE PAGE, ABSTRACT AND OVERALL FORMATTING (5 POINTS) - Make sure that you following the formatting for Respiratory Physiology and Neurobiology as detailed above.

2. INTRODUCTION (20 POINTS) – The points will be divided between participants and all group members are required to participate. Includes how well each person knows the material, how well they answer questions, etc.

3. MATERIAL AND METHODS (20 POINTS) - The points will be divided between participants and all group members are required to participate. Includes how well each person knows the material, how well they answer questions, etc.

4. RESULTS (10 POINTS) - The points will be divided between participants and all group members are required to participate. Includes how well each person knows the material, how well they answer questions, etc.

5. DISCUSSION (30 POINTS) - The points will be divided between participants and all group members are required to participate. Includes how well each person knows the material, how well they answer questions, etc.

6. REFERENCES AND REFERENCE LIST (5 POINTS)

7. TABLES AND FIGURES (10 POINTS)

REFERENCES

LABORATORY SAFETY: For the field-work students should have suitable clothing. For the necropsy, students must wear a laboratory coat to be admitted to lab. No spare coats are available so if you forget yours, you will not be admitted to lab. Long pants are required. Shoes have to be completely closed around the toes, heels, top and bottom of the feet. No food, drink, makeup, grooming materials, gum, breath mints/spray/fresheners, candy, or anything else that goes in the mouth will be allowed. Gloves will be provided as needed.

ATTENDANCE: My attendance policy is the same as that stated in the University Catalog. Attendance is the student’s responsibility, and students are required to attend. As participation is part of the grade, not attending will affect your grade. Late arrival will not be accepted and I have a closed door policy during class. Attendance is not used to determine grades. In lecture, even when I take roll, I do not give—per se—a bonus for attendance, nor a penalty for absence (except for missing an examination, or an assignment). I may choose to give information not covered in the book or quizzes which may count toward the grade. Thus, coming to lecture on a regular basis should result in a higher grade, and if you come to class often, it will help you do well in this course.

ABSENCES: You are responsible for the material covered and assignments made in every lecture regardless of whether you attend it or not. “I came in late and didn’t hear about the assignment, or specific material,” is never an acceptable excuse. It is always your responsibility to determine what happened in class during your absence. If you are absent, tardy, or leave early, you will have to copy a classmates notes and handouts. I will not, “track down” absentees to make sure that they know about material not covered in the textbook. As note-taking is an important skill to develop, I do not “share” my notes or PowerPoints (including posting them on the web).

Miscellaneous Policies Regarding Attendance:
There are no make-ups for missed work except for an excused absence. An excused absence allows us to make alternative arrangements for completing work and taking exams. The documentation required for an absence to be excused must be…

• from an appropriate source (e.g., doctor, dentist, funeral director) who states the nature of the event that caused (or will cause) your absence.
• in writing, on official stationery, and signed. (I do not return excuses to you.) Telephone calls, FAXes, and e-mails are not acceptable.
• presented prior to the absence for a scheduled event (e.g., university-sponsored activity, recognized religious holiday, military service).
• presented no more than one week after the date of an unexpected absence

When an excused absence is planned ahead, the student should consult with the Professor to be given a pre-test (see below). When the absence is an emergency (medical or otherwise), the Professor and TAs should be notified as soon as possible and the appropriate documentation submitted. In those cases, a make-up test will be given after the original test. This may vary in format and content at the discretion of the Professor, and scheduled in consultation with the student.

Unacceptable Excuses: Only unavoidable absences are excused, so you should schedule
routine personal events (e.g., vacations, weddings, reunions, non-emergency medical or dental visits, parent-teacher conferences, household or auto repairs) to avoid conflicts with your classes. Oversleeping is never an acceptable excuse. Employment conflicts are not acceptable excuses for absences, tardiness, or leaving class early. (Once enrolled in a class, it is the student’s responsibility to arrange his or her work schedule so that no regularly scheduled class or examination time is missed.) Texas waives jury duty for students, so jury duty is not an acceptable excuse.

“Pre-Tests”: For some scheduled events (official University business, athletics, military duty, etc.), or an acceptable excuse, you may arrange to take a lecture examination before (but not after) its scheduled date. (You should take a test as close to its originally scheduled time as possible, but you may not take a test more than one week before its originally scheduled time. You must obtain your instructor’s approval at least two weeks before you wish to take the pre-test.). If you arrange to take any test at an alternate time and do not show for that appointment, then you forfeit the opportunity to take the test except at its originally scheduled time. Students who do not arrange to take examinations in advance will not be eligible for this special consideration. A written excuse from the university department involved or from the Office of Student Affairs is required.

The instructor—in consultation with the Vice President for Student Affairs—will determine if circumstances warrant giving an individual a make-up test after the original test. A make-up test given after the original test may vary in format and content at the discretion of the Professor. The exam day will be scheduled in consultation with the student.

Late Assignments: You may always turn in assignments early. Except for excused absences, late assignments will not be accepted. If you know in advance that you will have an excused absence when an assignment is due, you must turn in that assignment before its due date. You should turn in assignments that were missed because of an unexpected, excused absence as soon as possible.

Any situations for which you cannot provide an acceptable excuse as outlined above (e.g., “I have an excuse, but it is too personal to discuss with you”) will be discussed with the Vice President for Student Affairs.

RELIGIOUS HOLIDAYS: Any student who will miss class and/or test days because of recognized religious holidays should notify me as soon as possible so we can make alternative arrangements. Prior notification is required for such absences to be excused.

DISABILITY AND VETERANS’ SERVICES: Texas A&M University-Corpus Christi is committed to providing persons with disabilities an equal opportunity to access campus facilities, resources and programs. The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. Support and accommodations are also available for
returning veterans who experience cognitive and/or physical access issues in the classroom or on campus. Our Office of Disability Services arranges such support and academic accommodations. To make a request, or for more information, call (361) 825-5816 or visit Driftwood 101. It is important to contact the Office of Disability Services in a timely fashion as it will take time for them to review requests and prepare accommodations and accommodation letters.

CLASSROOM ETIQUETTE: You are adult University students. I will treat you as such, and I will expect you to act as such. You will act with courtesy and common sense. I will not tolerate disruptive, disrespectful, or abusive behavior/language directed toward anyone in this class (i.e., student or instructor). Violations range from talking during class to outright insubordination, and will result in penalties that range from the student being asked to stop to the student being “escorted” from the class - permanently. Cellular phones (including text messaging), pagers, and other “beepers” must be turned off in the classroom. (I will make exceptions for certain “emergency” personnel, but you must see me to obtain this.) Children are not allowed in the rooms during lecture, or when the child’s guardian is working or studying “after hours.”

ACADEMIC INTEGRITY/PLAGIARISM: University students are expected to conduct themselves in accordance with the highest standards of academic honesty. Academic misconduct for which a student is subject to penalty includes all forms of cheating, such as illicit possession of examinations or examination materials, falsification, forgery, complicity or plagiarism. (Plagiarism is the presentation of the work of another as one’s own work.) In this class, academic misconduct or complicity in an act of academic misconduct on an assignment or test will result in prosecuted to the full extent of University regulations (see the Student Handbook and the Catalog 2010-11: Texas A&M University-Corpus Christi). The following procedures will be enforced:

- You must be prepared to present a photo ID at all examinations.
- Different test forms may be prepared for a single examination. To ensure that the appropriate key will be used to grade your answer sheet, always follow instructions on the test or answer sheet, or given orally by the instructor.
- If you leave an examination room—for any reason—you must hand in your answer sheet and you will not be allowed to resume the examination. Attend to personal matters (e.g., rest room visits) before the examination.
- Be on time! Anyone arriving after someone has completed an examination and left the room will not be allowed to take that examination.
- Plagiarism is the presentation of the work of another as one’s own work and will not be tolerated.

ACADEMIC ADVISING: The College of Science & Technology requires that students meet with an Academic Advisor as soon as they are ready to declare a major. The Academic Advisor will set up a degree plan, which must be signed by the student, a faculty mentor, and the department chair. The College’s Academic Advising Center is located in
GRADATION APPEALS: As stated in the Texas A&M University-Corpus Christi University Rules and Procedures (Section B [Academic Program], Part 13 [Students]: 13.02.99.C2 [Student Grade Appeals] and 13.02.99C2.01 [Student Grade Appeal Procedures]), a student who believes that he or she has not been held to appropriate academic standards as outlined in the class syllabus, equitable evaluation procedures, or appropriate grading, may appeal the final grade given in the course. The burden of proof is on the student to demonstrate the appropriateness of the appeal. A student with a complaint about a grade is encouraged to first discuss the matter with the instructor. For complete details, including the responsibilities of the parties involved in the process and the number of days allowed for completing the steps in the process, consult the University Rules and Procedures specified above (accessible through the University Rules and Procedures website at http://www.tamuuc.edu/provost/university_rules/index.html). For assistance and/or guidance in the grade appeal process, students may contact the Office of Student Affairs.

DROPPING THE COURSE (OR NOT): I hope that you never find it necessary to drop this or any other class. However, events can sometimes occur that make dropping a course necessary or wise. Please consult with me before you decide to drop to be sure it is the best thing to do. Should dropping the course be the best course of action, you must initiate the process to drop the course by going to the Student Services Center and filling out a course drop form. Just stopping attendance and participation WILL NOT automatically result in your being dropped from the class. If you drop the class before the “drop date” (see the online Spring 2011 schedule for more information), you will be assigned a grade of “W.” There are consequences for dropping a class, so read the drop policy in the University Catalog (better still, see your academic advisor and someone in the financial aid office) before you drop any class. In the middle of the semester, you are likely to receive midterm grade reports (either on S.A.I.L. or through some other means). If you have a lower mid-term grade than you wish, it should concern you, but not frighten you. (Remember that there are more opportunities to earn points and boost your grades in the last half of most courses than in the first half.) Talk to your instructors (not to other students) to explore your options. Also note that the mid-term grades posted on S.A.I.L. are not official, not a guarantee and are never updated; once they are posted they cannot be changed even if your grade in the class does change.