Statics

Course Description
The course is an introduction to the theory and applications of Engineering Mechanics. Topics include force vectors, equilibrium, force systems, structural analysis, friction, centroids/center of gravity, moment of inertia, kinematics of particles and rigid bodies, impulse and momentum.

Learning Objectives:
Express forces, positions, resolve forces into components, and find resultants in Cartesian coordinates.
Calculate vector dot and cross products
Create free body diagrams.
Use equilibrium equations
Calculate moments in two and three dimensions
Determine the internal and external forces in the members of a truss.
Determine the centers of gravity and centroids of a system.

Major Course Requirements
The prerequisites for this course are PHYS 2425 University Physics I

Your course grade will be determined by your performance in the homework assignments, lab experiments/exercises, quizzes, two exams, and a final exam. The distribution of points is as follows:
1. Homework Assignments--10%
2. Quizzes/Experiments-15%
3. Three mid-term exams--50%
4. Final exam--25%

Grades will be assigned according to the following scale:
A: 100-90, B: 89-80, C: 79-70, D: 69-60, and F: 59-0.

Required or Recommended Readings

Course Policies
General: Attend all classes and labs. Classes begin at the scheduled time, please be prompt. Regular completion of all reading, homework, and experiments is essential.
Safety: The safety of students, faculty, staff and visitors to the ET laboratories is a major issue. You must follow safety procedures and use personal protective equipment as required.

Attendance: I expect students to attend class, arrive on time, and perform assigned work. Late work will only be accepted when a good cause exists. Homework or other assignments will be accepted only if it is submitted in class, placed in my mailbox or e-mailed to me by the due date/time. If you must be absent, it is your responsibility to secure assignments, etc. from the class missed.

Late work and Make-up Exams: Late work is not accepted without good cause. Make-up exams are only permitted with cause and must be arranged with 1 week prior notice. In the absence of a true emergency, no make-up exams will be allowed.

Student collaboration: I strongly encourage collaboration on homework. It will help you to understand the ideas better if you explain them to one other. The same is true of laboratories, except the reports must be done individually. When collaborating, be sure you understand the solutions—don’t simply copy.

Assignment Formats: Homework and exams should be organized and neatly presented. Circle or box the answers to each problem. **Appropriate units must be included on all answers.** At the top right of each page of homework write your name, the course number, the assignment number, and date. **Pages are to be numbered and stapled.**

Extra Credit: Extra Credit questions/problems may be in some the tests and homework.

Cell phone/Electronic Device Usage: Neither cell phone nor electronic devices are allowed in the class or the laboratory. Students are required to **turn off** cell phones and other electronic devices before class unless you gain permission for an exception.

Academic Integrity/Plagiarism: University students are expected to conduct themselves in accordance with the highest standards of academic honesty. Academic misconduct for which a student is subject to penalty includes all forms of cheating, such as illicit possession of examinations or examination materials, falsification, forgery, complicity or plagiarism. (Plagiarism is the presentation of the work of another as one’s own work.) In this class, academic misconduct or complicity in an act of academic misconduct on an assignment or test will result in class failure.

Dropping a Class: I hope that you never find it necessary to drop this or any other class. However, events can sometimes occur that make dropping a course necessary or wise. Please consult with me before you decide to drop to be sure it is the best thing to do. Should dropping the course be the best course of action, you must initiate the process to drop the course by going to the Student Services Center and filling out a course drop form. Just stopping attendance and participation WILL NOT automatically result in your being dropped from the class. Friday, April 11, 2014 is the last day to drop a class with an automatic grade of “W” this term.
Classroom/professional behavior: Texas A&M University-Corpus Christi, as an academic community, requires that each individual respect the needs of others to study and learn in a peaceful atmosphere. Under Article III of the Student Code of Conduct, classroom behavior that interferes with either (a) the instructor’s ability to conduct the class or (b) the ability of other students to profit from the instructional program may be considered a breach of the peace and is subject to disciplinary sanction outlined in article VII of the Student Code of Conduct. Students engaging in unacceptable behavior may be instructed to leave the classroom. This prohibition applies to all instructional forums, including classrooms, electronic classrooms, labs, discussion groups, field trips, etc.

Grade Appeals: A student who believes that he or she has not been held to appropriate academic standards as outlined in the class syllabus, equitable evaluation procedures, or appropriate grading, may appeal the final grade given in the course. The burden of proof is on the student to demonstrate the appropriateness of the appeal. A student with a complaint about a grade is encouraged to first discuss the matter with the instructor. For complete details on the process, including the responsibilities of the parties involved in the process and the number of days allowed for completing the steps in the process, consult Texas A&M University-Corpus Christi University Procedure 13.02.99.C2.01 Student Grade Appeal Procedures (http://www.tamucc.edu/provost/university_rules/index.html), and the College of Science and Engineering Grade Appeals webpage (http://sci.tamucc.edu/students/GradeAppeal.html). For assistance and/or guidance in the grade appeal process, students may contact the chair or director of the appropriate department or school or the College of Science and Engineering Dean’s Office.

Disabilities Accommodations: The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please call or visit Disability Services at (361) 825-5816 in Driftwood 101.

If you are a returning veteran and are experiencing cognitive and/or physical access issues in the classroom or on campus, please contact the Disability Services office for assistance at (361) 825-5816.

Statement of Academic Continuity: In the event of an unforeseen adverse event, such as a major hurricane and classes could not be held on the campus of Texas A&M University–Corpus Christi; this course would continue through the use of Blackboard and/or email. In addition, the syllabus and class activities may be modified to allow continuation of the course. Ideally, University facilities (i.e., emails, web sites, and Blackboard) will be operational within two days of the closing of the physical campus. However, students need to make certain that the course instructor has a primary and a secondary means of contacting each student.
Exams
The first mid-term exam is scheduled for week 5, the second in week 9, and the third during week 13 during scheduled class time. The final exam is comprehensive and as scheduled by the university. No makeup exams are allowed without prior permission of the instructor (Very difficult to obtain).

<table>
<thead>
<tr>
<th>WK</th>
<th>Week of</th>
<th>Readings</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/20</td>
<td>Ch. 1</td>
<td>Intro/Units</td>
</tr>
<tr>
<td>2</td>
<td>1/27</td>
<td>Ch. 2</td>
<td>Vectors/Scalars</td>
</tr>
<tr>
<td>3</td>
<td>2/3</td>
<td>Ch. 3</td>
<td>Equilibrium of a Particle</td>
</tr>
<tr>
<td>4</td>
<td>2/10</td>
<td>Ch. 3</td>
<td>Resultants</td>
</tr>
<tr>
<td>5</td>
<td>2/17</td>
<td>Ch. 4</td>
<td>Resultants</td>
</tr>
<tr>
<td>6</td>
<td>2/24</td>
<td>Ch. 4</td>
<td>Resultants</td>
</tr>
<tr>
<td>7</td>
<td>3/3</td>
<td>Ch. 5</td>
<td>Equilibrium of a Rigid Body</td>
</tr>
<tr>
<td>8</td>
<td>3/10</td>
<td>Ch. 5</td>
<td>Spring Break</td>
</tr>
<tr>
<td>9</td>
<td>3/17</td>
<td>Ch. 6</td>
<td>[Free Body diagrams]</td>
</tr>
<tr>
<td>10</td>
<td>3/24</td>
<td>Ch. 7</td>
<td>Equations of Equilibrium</td>
</tr>
<tr>
<td>11</td>
<td>3/31</td>
<td>Ch. 8</td>
<td>Equations of Equilibrium</td>
</tr>
<tr>
<td>12</td>
<td>4/7</td>
<td>Ch. 9</td>
<td>Two and Three Dimension Problems</td>
</tr>
<tr>
<td>13</td>
<td>4/14</td>
<td>Ch. 10</td>
<td>Trusses—Method of Joints</td>
</tr>
<tr>
<td>14</td>
<td>4/21</td>
<td>Ch. 10</td>
<td>Trusses—Method of Sections</td>
</tr>
<tr>
<td>15</td>
<td>4/28</td>
<td>Ch. 11</td>
<td>Review</td>
</tr>
</tbody>
</table>