1 Course Information

Meetings

Section .001, Lecture: MW 8:00-8:50, IH 268
Section .211, Lab: MW 9:00-9:50, CCH 204
Sections .G01 and Lab Section .G11: online

Professor Dr. Blair Sterba-Boatwright
Office CI 312
Phone 361-825-2724
E-mail blair.sterbaboatwright@tamucc.edu

ClassURL I will be using a Blackboard 9 page for this course. You can log on by going to bb9.tamucc.edu
or iol.tamucc.edu.

OfficeHrs MW 3:30-5:30 pm; T 1-3 pm; other times by appointment.

2 Course Description

This course is for graduate students in disciplines other than MATH in the College of Science and Engineering,
and is designed to prepare them to use statistical methods in their research. This is a non-calculus exposition
of the concepts, methods and usage of statistical data collection and analysis. Topics include descriptive
statistics, the t-test, one and two-way analysis of variance, multiple comparison tests and multiple regression.
Students also learn how to conduct this analyses using computer software, how to read other people's
statistical work, and how to properly report their findings.

3 Prerequisites

MATH 1442 or other undergraduate statistics course or equivalent.

4 Text and Other Supplies

Texts (Recommended)

Some students feel that my lecture notes are complete enough to suffice as a reference for this course. However,
I don’t feel they would constitute an adequate reference for your entire professional career. Therefore,
depending on your budget, I recommend that you get some of the following books, if not for this semester,
then for the future:
• Gotelli, N. J. and Ellison, A. M. (2004) *A Primer of Ecological Statistics*, Sinauer Associates, ISBN 978-0-87893-269-6. This is the book on which my lecture notes are based. This is an excellent introduction to statistics, particularly (as the title indicates) for ecologists, but does not cover nearly as much material as Quinn and Keough. It includes several chapters that I won’t discuss much or at all, including a couple on designing field experiments.

• Quinn, G. P. and Keough, M. J. (2002) *Experimental Design and Data Analysis for Biologists*. Cambridge University Press. ISBN 978-0-521-00976-8. This is a much more extensive coverage of statistics than Gotelli and Ellison, and is the text we use for Stats II, if you’re heading for that course. It is also probably the best reference book of the three I’ll mention. However, I don’t think it’s as good a text for a first semester course as Gotelli and Ellison, primarily because it moves a little fast for beginners and because the early chapters are not organized the way I’d do it.

• Dalgaard, P. (2008) *Introductory Statistics with R*, 2nd edition. Springer-Verlag. As you can tell by the title, this book covers both how to use R and statistics, but the first two chapters are purely about R. Unlike the other two books, it’s not aimed primarily at biologists. I will not be using this book in the course, but it’s a good reference for aspects of R.

Software

We will be using the statistical package R. This is open source and may be downloaded for free. To get your own copy: go to www.cran.r-project.org and download your favorite flavor. While there, go to the Manuals link on the left and also download the Introduction to R

- Advantages compared to SAS and SPSS: open source package with worldwide community contributing new routines all the time, easiest to install at home or on a thumb drive so very portable, gaining popularity, most flexible package, best graphics, best for simulation, available in all platforms (Mac, Windows, Linux)

- Disadvantages compared to SAS and SPSS: not menu driven, more difficult to learn without a programming background, can be difficult to find what you want in the help files, treatment of mixed models is more difficult (although arguably more modern)

5 Student Learning Outcomes

Probability and distributions

- Students will understand the derivation of important discrete distributions based on the axioms and elementary rules of probability

- Students will analyze experimental situations to determine which discrete distribution is applicable, and will be able to diagnose and adjust for erroneous choices

- Students will decide if given samples can be successfully modeled with normal distributions, and will be able to choose among several elementary transformations to increase normality

Summary statistics and confidence intervals

- Students will use graphs and summary calculations to make preliminary investigations of datasets

- Students will compute confidence intervals using classical methods based on the Central Limit Theorem and using bootstrapping techniques
Conceptual framework for design and analysis of experiments

- Students will understand three approaches to analysis of experiments: hypothesis testing based on Monte Carlo techniques; hypothesis testing based on frequentist techniques; and Bayesian analysis.
- Students will be able to analyze descriptions of experiments to determine appropriate statistical experimental design.

Three important types of statistical analysis:

Regression
- Students will be able to diagnose situations in which regression is the appropriate statistical tool.
- Students will be able to use R to perform all relevant statistical calculations for a regression.
- Students will be able to diagnose and correct problems with regression models.

ANOVA
- Students will be able to diagnose situations in which ANOVA is the appropriate statistical tool.
- Students will be able to use R to perform all relevant statistical calculations for an ANOVA.
- Students will be able to diagnose and correct problems with ANOVA models.
- Students will be able to perform and interpret post-hoc tests for one-way ANOVAs.

Analyzing categorical data
- Students will be able to diagnose situations in which contingency table and goodness of fit tests are appropriate statistical tools.
- Students will be able to use R to perform all relevant statistical calculations for contingency tables and goodness of fit tests.

6 Instructional Methods and Activities
Methods for instruction include the following:
- Lecture
- Use of computer resources, including statistical software, spreadsheets, and the Internet for data location, data organization, and data analysis
- During a few weeks, “lab” time may be replaced by additional lecture

7 Evaluation and Grade Assignment
Methods of evaluation and the criteria for grade assignments are as follows:
<table>
<thead>
<tr>
<th>Type of Assignment</th>
<th>Weighting in Final Grade</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>25%</td>
<td>Consultation OK but submission should be individual</td>
</tr>
<tr>
<td>Three semester tests</td>
<td>25% each</td>
<td>• Tests will be two hours long.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tests for sections .001/.211 will take place in CCH 204 from 8-10 am; specific times for tests for sections .G01/.G11 are TBA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tests are open notes, book, computer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The first two tests will be Wednesday Oct 9 and Wednesday Nov 11.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For sections .001/.211, the third test will be given during the Final Exam period for the Lab, which has not been posted at the time I’m writing this. For sections .G01/.G11, the third test date/time is TBA.</td>
</tr>
</tbody>
</table>

Based on the above, grades will be assigned according to the following scale:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>85-100</td>
</tr>
<tr>
<td>B</td>
<td>72-84</td>
</tr>
<tr>
<td>C</td>
<td>59-71</td>
</tr>
<tr>
<td>D</td>
<td>46-58</td>
</tr>
<tr>
<td>F</td>
<td>0-45</td>
</tr>
</tbody>
</table>

8 Tentative Course Schedule

Week_1 Introduction to course; lecture: Gotelli and Ellison, Chapter 1; Lab: Intro to R
Week_2 Lecture: Gotelli and Ellison, Chapter 1; Lab: R as probability calculator
Week_3 Lecture: Gotelli and Ellison, Chapter 2; Lab: Handling data in R
Week_4 Lecture: Gotelli and Ellison, Chapter 2 (continued); Lab: Graphs in R
Week_5 Lecture: Gotelli and Ellison, Chapter 3; Lab: Confidence Intervals in R
Week_6 Lecture: Gotelli and Ellison, Chapter 4; Lab: Test 1
Week_7 Lecture: Gotelli and Ellison, Chapter 5; Lab: t-tests in R
Week_8 Lecture: Gotelli and Ellison, Chapter 5 (continued); Lab: t-tests in R
Week_9 Lecture: Gotelli and Ellison, Chapters 6 & 8; Lab: Monte Carlo methods
Week_10 Lecture: Gotelli and Ellison, Chapter 9; Lab: Monte Carlo methods (continued)
Week_11 Lecture: Gotelli and Ellison, Chapter 9 (continued); Lab: Test 2
Week_12 Lecture: Gotelli and Ellison, Chapters 9 (continued) & 10; Lab: Regression
Week_13 Lecture: Gotelli and Ellison, Chapter 10 (continued); Lab: Regression (continued)
Week_14 Lecture: Gotelli and Ellison, Chapter 10 (continued); Lab: ANOVA
Week_15 Lecture: Gotelli and Ellison, Chapter 11; Lab: ANOVA (continued)
9 Class Policies

• If you are unable to attend a test and you wish to make it up, I need to hear from you no later than 24 hours after the missed test. You should be able to provide adequate documentation of why your absence was necessary. If you wait more than 24 hours to contact me, you will also need to provide adequate documentation of why you were unable to meet the 24-hour deadline. As an example, “I was called out of town unexpectedly on business” might be a valid reason to miss a test, but it is not an adequate reason to miss the 24-hour notification requirement.

• A grade of I (Incomplete) will only be given in exceptional circumstances, such as a death in the family or personal injury that might prevent someone from taking the final exam. In this case, it is the responsibility of the student to notify me as soon as possible, preferably by e-mail, and to complete the required "Incomplete Form" available from the University Registrar. If this is not done, a score of 0% will be assigned for any incomplete tests and a final grade will be computed using the criteria described above.

• University students are expected to conduct themselves in accordance with the highest standards of academic honesty. Academic misconduct for which a student is subject to penalty includes all forms of cheating, such as illicit possession of examinations or examination materials, falsification, forgery, complicity or plagiarism. (Plagiarism is the presentation of the work of another as one’s own work.) In this class, academic misconduct or complicity in an act of academic misconduct on an assignment or test will result in a grade of 0% on that assignment or test.

• Although obviously I hope all goes smoothly for you this semester, events can sometimes occur that make dropping a course necessary or wise. I encourage you to consult with me before you decide to drop to be sure it is the best thing to do. Should dropping the course be the best course of action, you must initiate the process to drop the course by going to the Student Services Center and filling out a course drop form. Just stopping attendance and participation WILL NOT automatically result in your being dropped from the class. Friday, November 15, is the last day to drop a class with an automatic grade of “W” this term.

10 University Statements

Grade Appeals
As stated in University Rule 13.02.99.C2, Student Grade Appeals, a student who believes that he or she has not been held to appropriate academic standards as outlined in the class syllabus, equitable evaluation procedures, or appropriate grading, may appeal the final grade given in the course. The burden of proof is upon the student to demonstrate the appropriateness of the appeal. A student with a complaint about a grade is encouraged to first discuss the matter with the instructor. For complete details, including the responsibilities of the parties involved in the process and the number of days allowed for completing the steps in the process, see University Rule 13.02.99.C2, Student Grade Appeals, and University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures. These documents are accessible through the University Rules Web site at http://www.tamucc.edu/provost/university_rules/index.html. For assistance and/or guidance in the grade appeal process, students may contact the Office of Student Affairs at (361) 825-2612, by e-mail at student.affairs@tamucc.edu, or in person at UC 318.

Disability Accomodation
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please call or visit Disability Services at (361) 825-5816 in Driftwood 101.

If you are a returning veteran and are experiencing cognitive and/or physical access issues in the classroom or on campus, please contact the Disability Services office for assistance at (361) 825-5816.
Classroom/Professional Behavior

Texas A&M University-Corpus Christi, as an academic community, requires that each individual respect the needs of others to study and learn in a peaceful atmosphere. Under Article III of the Student Code of Conduct, classroom behavior that interferes with either (a) the instructor’s ability to conduct the class or (b) the ability of other students to profit from the instructional program may be considered a breach of the peace and is subject to disciplinary sanction outlined in article VII of the Student Code of Conduct. Students engaging in unacceptable behavior may be instructed to leave the classroom. This prohibition applies to all instructional forums, including classrooms, electronic classrooms, labs, discussion groups, field trips, etc.