Differential Equations MATH-3315-001
Department of Mathematics and Statistics
Spring 2015

A. COURSE INFORMATION
 Course number/section: MATH – 3315.001
 Class meeting time: TR 12:30 - 1:45 PM
 Class location: CS 115
 Course Website: https://bb9.tamucc.edu

B. INSTRUCTOR INFORMATION
 Instructor: Dr. D. Palaniappan (Dr. Pal)
 Office location: EN 211
 Office hours: MW 10:00 – 11:30 AM
 TR 9:30 – 10:30 AM
 Telephone: 825-2221
 e-mail: devanayagam.palaniappan@tamucc.edu
 Appointments: e-mail

C. COURSE DESCRIPTION
 Catalog Course Description
 Standard types of ordinary differential equations are studied in this course. First, second, and higher order equations are examined. Students will be entertained with Laplace transforms, power series method and the basic theory of existence/ uniqueness.

 Extended Course Description
 The course is enhanced by the computational and graphical capabilities of MATLAB or other software.

 This course utilizes differentiation and integration tools to solve ordinary differential equations arising in engineering, biological and physical sciences.

D. PREREQUISITES AND COREQUISITES
 Prerequisites
 MATH 2414 (Calculus II). May be taken concurrently with MATH 3470 (Calculus III).
 Students must know all derivative and integration techniques very well.

 Co-requisites
 None
E. **REQUIRED TEXTBOOK(S), READINGS AND SUPPLIES**

Required Textbook(s)

Optional Textbook(s) or Other References
Will be provided as needed

Supplies
None

F. **STUDENT LEARNING OUTCOMES AND ASSESSMENT**

Assessment is a process used by instructors to help improve learning. Assessment is essential for effective learning because it provides feedback to both students and instructors. A critical step in this process is making clear the course’s student learning outcomes that describe what students are expected to learn to be successful in the course. The student learning outcomes for this course are listed below. By collecting data and sharing it with students on how well they are accomplishing these learning outcomes students can more efficiently and effectively focus their learning efforts. This information can also help instructors identify challenging areas for students and adjust their teaching approach to facilitate learning.

By the end of this course, students should be able to:

1. The student will be able to identify and classify differential equations (DE).
 A. Classify a differential equation (DE) by type, order, and linearity.
 B. Show that a given function is a solution to an ordinary differential equation.
 C. Determine the existence of a unique solution to an ODE.
 D. Construct ODE’s as mathematical models.

2. The learner will be able to solve first-order ordinary differential equations (ODE).
 A. Solve an ODE by separation of variables with or without an initial condition.
 B. Determine if an ODE is exact and solve it if it is exact.
 C. Find the general solution of a linear ODE with and without initial conditions.
 D. Solve a homogeneous and Bernoulli ODE using a substitution.

3. The learner will be able to solve first-order ODE in applications.
 A. Construct a linear ODE as a mathematical model.
 B. Construct a non-linear ODE as a mathematical model.
 C. Construct a system of linear ODE’s as a mathematical model.

4. The learner will be able to solve higher-order ODE.
 A. Solve a nth-order initial-value problem (IVP).
 B. Solve a nth-order boundary-value problem (BVP).
 C. Determine whether given functions are linearly independent or dependent.
 D. Verify that given functions forms a fundamental set of solutions.
 E. Solve ODE’s using undetermined coefficients.
F. Solve ODE’s by variation of parameters.
G. Solve a system of ODE’s by systematic elimination or determinants.
H. Solve non-linear equations using a substitution.
I. Construct ODE’s as mathematical models to initial-value problems.

5. The learner will be able to find power series solutions to ODE.
 A. Find the interval of convergence of a power series.
 B. Solve ODE’s using power series.

6. The learner will be able to solve ODE using the Laplace transform.
 A. Find the Laplace transform of a given function.
 B. Find the inverse Laplace transforms.
 C. Solve ODE’s using Laplace transforms.

7. The learner will be able to approximate a solution to ODE using numerical methods.
 A. Create direction fields for ODE’s.
 B. Approximate a solution to a ODE using Euler’s and the improved Euler’s method.
 C. Approximate a solution to an ODE using Runge-Kutta methods.

8. The learner will strengthen his or her general academic skills (critical thinking, writing, verbal explanation, working collaboratively, assuming responsibility, and use of technology).

9. The learner will develop a broad base of differential equations knowledge: Concepts, Basic skills, mathematical senses (quantitative, geometric, symbolic), and thinking process (problem solving, predicting, and generalizing)

G. INSTRUCTIONAL METHODS AND ACTIVITIES

A variety of instructional methods may be used depending on content area. These include but are not limited to: lecture, multimedia, cooperative/collaborative learning, labs and demonstrations, projects and presentations, performances, and learning experiences outside the classroom. Methodology will be selected to best meet student needs.

H. MAJOR COURSE REQUIREMENTS AND GRADING

Homework will be assigned in class along with the due date. No credit for late homework. Quizzes will be given in class. At the end of the semester the lowest homework/quiz grade gets dropped.

Project: Each student will select a topic to describe a physical problem from mechanical engineering. The problem should be such that its mathematical model use the concepts of this course. Project paper (report) should include the following:
 a. Statement of the problem
 b. Its Mathematical Model
 c. Analytical/numerical results of the model
 d. Interpretation of the results

Grades will be calculated based on the following
<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>% of FINAL GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td>50%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>10%</td>
</tr>
<tr>
<td>Homework</td>
<td>10%</td>
</tr>
<tr>
<td>Project Report</td>
<td>5%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>25%</td>
</tr>
</tbody>
</table>

Grading scale:
A = 90% – 100%
B = 80% - 89%
C = 70% - 79%
D = 60% - 69%
F = Below 60%

I. COURSE CONTENT/SCHEDULE

<table>
<thead>
<tr>
<th>Week of</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 19</td>
<td>Intro. to Differential Equations (DE): Classification, Solutions, Existence, and Models</td>
</tr>
<tr>
<td>Jan 26</td>
<td>First Order DE: Separation of variables and Exact equations</td>
</tr>
<tr>
<td>Feb 02</td>
<td>First Order DE: General solutions and Substitutions</td>
</tr>
<tr>
<td>Feb 09</td>
<td>Modeling with First Order DE: Linear, Non-linear and Systems</td>
</tr>
<tr>
<td>Feb 16</td>
<td>Higher Order DE: Initial and Boundary-value equations</td>
</tr>
<tr>
<td>Feb 23</td>
<td>Test #1</td>
</tr>
<tr>
<td>Mar 02</td>
<td>Higher Order DE: Linear Independence and Fundamental Set</td>
</tr>
<tr>
<td>Mar 09</td>
<td>Higher Order DE: Undetermined Coefficients and Variation of Parameters</td>
</tr>
<tr>
<td>Mar 23</td>
<td>Modeling with Higher Order DE</td>
</tr>
<tr>
<td>Mar 30</td>
<td>Test #2</td>
</tr>
<tr>
<td>April 06</td>
<td>Series solutions of linear DE</td>
</tr>
<tr>
<td>April 13</td>
<td>Laplace Transform</td>
</tr>
<tr>
<td>April 20</td>
<td>Systems of differential equations</td>
</tr>
<tr>
<td>April 27</td>
<td>Test #3, Numerical Methods of ODE</td>
</tr>
<tr>
<td>May 04</td>
<td>Review</td>
</tr>
<tr>
<td></td>
<td>FINAL EXAM: Thursday, May 07, 11:00:-1:30PM</td>
</tr>
</tbody>
</table>

Note: Changes in this course schedule may be necessary and will be announced to the class by the Instructor. The assignments and exams shown are directly related to the Student Learning Outcomes described in Section F.
J. COURSE POLICIES

Attendance/Tardiness
Attendance will be taken each class. Attending class is a faster way of learning the material than trying to catch up on missed material solely from the book. Tardiness is often disruptive to the whole class and is not appreciated.

Late Work and Make-up Exams
Missed homework assignments cannot be made up. At most one make-up exam will be scheduled for each exam. Make-up exams tend to be harder than the original exam.

Extra Credit
There is no extra credit in this class.

Cell Phone Use
Cell phones and such must be turned on before class. Each time your phone rings during class, your course grade goes down by 1%.

Laptop Use
You may use a laptop to take notes during lecture. Distracting other students by surfing the web is not acceptable behavior.

Food in Class
No food in class (except during the final, where non-noisy foods are OK).

Missed Exam
If you have to miss an exam, it is your responsibility to contact me no later than the day of the exam. Failure to contact me on or before the exam day results in a grade of zero points for the exam. This also applies to the final exam. For missed final exams due to an acceptable excuse the university rules about I (Incomplete) grades apply and the make-up is at the instructor's convenience early in the next long semester. Only extreme emergencies or official university business are acceptable reasons to miss exams and documentation will be required. Car trouble, routine doctor's appointments, family reunions or graduations of siblings etc. are not valid reasons to miss exams. If your reason to miss the exam is not a valid one, your exam score is 0 points. Be sure to check before missing an exam whether your reason is acceptable.

Participation
Participation is not part of the grade, but you learn more by interacting, than by watching passively.
J. COLLEGE AND UNIVERSITY POLICIES

- **Academic Integrity (University)**
 It is expected that university students will demonstrate a high level of maturity, self-direction, and ability to manage their own affairs. Students are viewed as individuals who possess the qualities of worth, dignity, and the capacity for self-direction in personal behavior.
 See Full University Policy at http://catalog.tamucc.edu/content.php?catoid=10&navoid=313#Academic_Integrity

- **Classroom/Professional Behavior**
 Texas A&M University-Corpus Christi, as an academic community, requires that each individual respect the needs of others to study and learn in a peaceful atmosphere.
 Under Article III of the Student Code of Conduct, classroom behavior that interferes with either (a) the instructor's ability to conduct the class or (b) the ability of other students to profit from the instructional program may be considered a breach of the peace and is subject to disciplinary sanction outlined in article VII of the Student Code of Conduct.
 Students engaging in unacceptable behavior may be instructed to leave the classroom prohibition applies to all instructional forums, including classrooms, electronic classrooms, labs, discussion groups, field trips, etc.

- **Deadline for Dropping a Course with a Grade of W (University)**
 The grade of W will be assigned to any student officially dropping a course by Friday, April 10, 2015. No student is eligible to receive a W without completing the official drop process by this deadline. Visit the Office of the University Registrar for the Course Drop Form that must submitted. After April 10, 2015 a student will not be allowed to drop a course.

- **Grade Appeals (College of Science and Engineering)**
 As stated in University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures, a student who believes that he or she has not been held to appropriate academic standards as outlined in the class syllabus, equitable evaluation procedures, or appropriate grading, may appeal the final grade given in the course. The burden of proof is upon the student to demonstrate the appropriateness of the appeal. A student with a complaint about a grade is encouraged to first discuss the matter with the instructor. For complete details, including the responsibilities of the parties involved in the process and the number of days allowed for completing the steps in the process, see University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures. These documents are accessible through the University Rules website at http://www.tamucc.edu/provost/university_rules/index.html, and the College of Science and Engineering Grade Appeals webpage at http://sci.tamucc.edu/students/GradeAppeal.html. For assistance and/or guidance in the grade appeal process, students may contact the chair or director of the appropriate department or school, the Office of the College of Science and Engineering Dean, or the Office of the Provost.
Disability Services
Disability Services (DS) is the hub for coordinating services and accommodations to ensure accessibility and utilization of all programs for all Texas A&M University-Corpus Christi students with disabilities. Our services are designed to meet the unique educational needs of enrolled students with documented permanent or temporary disabilities. DS provides intake and consultation services to students seeking to register with our office. DS reviews an individual’s documentation of disability and assesses eligibility for services and the determination of reasonable accommodations. For more information visit the Disability Services Office at 116 Corpus Christi Hall or go to http://disabilityservices.tamucc.edu/

GENERAL DISCLAIMER
I reserve the right to modify the information, schedule, assignments, deadlines, and course policies in this syllabus if and when necessary. I will announce such changes in a timely manner during regularly scheduled lecture periods.