TEXAS A&M UNIVERSITY-CORPUS CHRISTI
College of Education and Human Development,
Department of Curriculum and Instruction
EDCI 5390/6390 – Teaching Physical Science through Children’s Literature
Course Syllabus – Spring 2017

I. Course Description

Course Instructor: Tonya D. Jeffery, Ed.D.
Graduate Assistant: Cindy Hopkins
Course Location: O’Connor Bldg., Room 118
Course Meets: Tuesday, 4:20p.m. – 6:50 p.m.
Office Location: Faculty Center 249
Office Hours: Wednesdays, 1:00PM – 4:00PM
Office phone: (361) 825-2453
Email: tonya.jeffery@tamucc.edu

This is a blended course (50% online, 50% face-to-face) and is designed for graduate students and accommodates masters and doctoral degree students in Curriculum & Instruction and other colleges on the campus who are interested in enhancing their science teaching skills. The major goal is to prepare teachers who can educate K-12 students to become scientifically literate. This aim requires educators to learn about the goals of scientific literacy, history and utility of trade books in science education and classrooms, the nature of science, the use of formative probes, to engage in book talks and science investigations, and to construct understanding of natural phenomena by exploring trade books and other forms of literature (newspapers, magazines, comic books, Sci-Fi texts, etc.) and creative writing in science (poetry, reader’s theatre, etc.), forming an elaborate cognitive framework of science literacy content and pedagogy. This class will meet face-to-face every other week.

II. Rationale

The National Science Teachers Association (2016) (NSTA) supports the notion that inquiry science must be a basic in the daily curriculum of every elementary school student at every grade level. In the last decade, numerous reports have been published calling for reform in education. Each report has highlighted the importance of early experiences in science so that students develop problem-solving skills that empower them to participate in an increasingly scientific and technological world. Additionally, NSTA recommends a strong emphasis on middle level science education, which can be achieved by staffing middle schools with teachers who are qualified to teach science and are trained and dedicated to working with students at this important period in their lives. Science concepts must be presented in an age-appropriate, engaging way so that students can build on their prior knowledge and attain the necessary background to participate successfully and responsibly in our highly scientific and technological society.

The middle school years, grades 5 through 9, are a time of tremendous physical, emotional, and cognitive changes for students. It also is a pivotal time in their understanding of and
enthusiasm for science. Research has shown that if educators don’t capture students’ interest and enthusiasm in science by grade 7, students may never find their way back to science. NSTA recommends that the curriculum of middle level science programs:

- Be aligned with the science content and process skills outlined in the National Science Education Standards.
- Nurture curiosity about the natural world and include “hands-on, minds-on” inquiry-based science instruction.
- Engage students in laboratory investigations a minimum of 80 percent of the science instruction time as specified in the NSTA position statement Laboratory Science.*
- Incorporate independent and cooperative group learning experiences during the study of science, and encourage informal learning experiences to support the curriculum.
- Integrate science with other curriculum subjects in a multidisciplinary approach, such as through theme-based learning.

NSTA recommends that the curriculum offer links to the real world by:

- Applying content and skills learned in science class to students’ own experiences.
- Connecting the classroom to the community through field trips, speakers, and local partnerships.
- Providing students with real-life experiences, such as mentoring and apprenticeships that enable them to develop an awareness of science-based careers and an understanding of how science is relevant to their lives.
- Providing opportunities for decision-making activities (e.g., debate or research papers) and for involvement in community-based problems.
- Promoting societal goals for scientific and technological literacy.

NSTA recommends that the assessment strategies used in middle level science programs:

- Include a variety of assessment methods that can be used to evaluate overall student achievement and guide decisions about instruction and practices.
- Be continuous and embedded in the instructional materials.
- Capture the interest of students to better engage them in the assessment process.
- Occur frequently to allow for modification, enrichment, and remediation.
- Include questions that are sensitive to gender and varied cultures.

NSTA recommends that middle level administrators support the science program by:

- Providing numerous opportunities for professional development experiences to bolster teachers’ knowledge of science content and enhance their skills in working with the middle level age group.
- Setting aside time for teachers to plan and strategize with colleagues in their own school as well as with those at the elementary and high school levels.
- Cultivating a dedicated team of teachers with a demonstrated expertise and interest in students in this age group, placing these teachers in the school system’s middle schools, and permitting them to remain in their assignments so that they can develop their expertise.
- Supporting the recommended time allotted for middle level laboratory investigations
- Providing necessary funding for laboratory investigations and science materials and resources.
III. Texas Education Agency STAAR Proficiencies, TExES Competencies, Texas Science Objectives, Science Common Standards:

<table>
<thead>
<tr>
<th>State Science Standards/Course Goals</th>
<th>Course Assignments</th>
</tr>
</thead>
</table>
| **Standard I.** The science teacher manages classroom, field, and laboratory activities to ensure the safety of all students and the ethical care and treatment of organisms and specimens. | • Article/Reading Reflection
• [Discussion Board (DB) Posts]
• Scientific Inquiry Investigations & Reflections
• Model Lessons |
| **Standard II.** The science teacher understands the correct use of tools, materials, equipment, and technologies. | • Article/Reading Reflection - DB Posts
• Science Process Skills
• State Standards (Process/Content TEKS)
• National Standards (NGSS)
• Scientific Inquiry Investigations & Reflections
• Model Lessons |
| **Standard III.** The science teacher understands the process of scientific inquiry and its role in science instruction. | • Article/Reading Reflection - DB Posts
• Scientific Inquiry Investigations & Reflections
• State Standards (TEKS)
• National Standards (NGSS)
• 5E Inquiry-Based Lesson Plan
• Book Talks
• Science Literacy Collaborative Research Project |
| **Standard IV.** The science teacher has theoretical and practical knowledge about teaching science and about how students learn science. | • Article/Reading Reflection - DB Posts
• Scientific Inquiry Investigations & Reflections
• State Standards (TEKS)
• National Standards (NGSS)
• 5E Inquiry-Based Lesson Plan
• Book Talks
• Science Literacy Collaborative Research Project |
Standard V. The science teacher knows the varied and appropriate assessments and assessment practices to monitor science learning

- Article/Reading Reflection - DB Posts
- Science Journal
- 5E Inquiry-Based Lesson Plan
- Book Talks
- Science Literacy Collaborative Research Project

Standard VI. The science teacher understands the history and nature of science.

- Article/Reading Reflection - DB Posts
- Science Journal
- 5E Inquiry-Based Lesson Plan
- Book Talks
- Science Literacy Collaborative Research Project

Standard VII. The science teacher understands how science affects the daily lives of students and how science interacts with and influences personal and societal decisions.

- Article/Reading Reflection - DB Posts
- Science Journal
- 5E Inquiry-Based Lesson Plan
- Book Talks
- Science Literacy Collaborative Research Project

IV. TEExES Competencies
This course is designed for preservice and/or in-service teachers who are interested in increasing their content knowledge, teaching self-efficacy, and professional development in scientific literacy.

V. Course Objectives and Learning Outcomes
The (behavioral and conceptual) objectives of this course include (but are not limited to) the following:

- Students will demonstrate comprehension of contemporary recommendations and goals of the State and National Science Standards and Associations.
- Students will evaluate the efficacy of the above goals and trends with respect to their areas of classroom teaching and local school systems.
- Students will develop a personal model of scientific literacy that reflects the nature of science and its effect on classroom pedagogy.
- Students will critically examine, observe, analyze, and reflect on current trends in the research and related literature base and in the classroom.
- Students will design and construct a research-based informed project that demonstrates the application of research-driven knowledge to practice in science-based classrooms.

Content Outline: Inasmuch as a large portion of this course is generative, exploratory, experimental, and field-based in nature, only a general outline of topics can be provided at this time. Students play a central role in the decisions concerning the topical nature and structure of this course.
I. Introduction and History of the Use of Trade Books in Science Education
II. Goals of Science Literacy [National Science Teachers Association (NSTA) Position Statements]
III. Why Use Trade Books? How to Select Trade Books for the Science Classroom?
IV. National and State Standards
V. Creative Writing in Science
VI. Science Formative Probes

Instructional Activities and Experiences

1. Review the National Science Teacher Association’s Position Statement on Scientific Literacy

2. Review the state science standards (TEKS) and Next Generation Science Standards (NGSS) to highlight the nature of science, and NGSS components, such as Science as Social Interaction, Engineering and Technology, and Science and Society.

3. Read various peer-reviewed journal articles that cover current trends and issues in science education, nature of science, and scientific inquiry.

4. During class sessions, the instructor will model many of the learning outcomes stated in the objectives.

5. Many science demonstrations and model lessons will be conducted in class, involving learning “science as inquiry” and “nature of science” with high student engagement for learning science content and science processes.

6. The course participants will read chapters in the assigned textbook in class, as well as several books, reflecting on certain aspects of science concepts, inquiry and science pedagogy.

7. Participants will summarize the instructional objectives and submit them to Blackboard for feedback in order to increase and reinforce their understanding of the topic.

8. Students will participate in a service learning project (Regional Science Fair) and submit a reflection of this experience.

Assessment of the Instructional Objectives/Learning Outcomes

The intended learning outcomes specified for these units will be assessed from summaries of Instructional Objectives and submitted to the course Blackboard site and during question-and-answer sessions in class. All of the Instructional Objectives may be assessed on a semester test and the final exam.

VI. Course Topics

Course topics include, but are not limited to: What is Science Literacy? History of Trade Books in Science Education; How to select Trade Books for the Science Classroom; Read-Alouds; Creative Writing in Science; Science Formative Probes; Science & Society; Scientific Inquiry; Learning Cycle; 5-E Instructional Model; Science misconceptions; Writing in Science
VII. Instructional Methods and Activities
- Traditional experiences (reading assignments, journal article reviews, written assignments, model lessons/demonstrations, labs, presentations)
- Online discussion via Blackboard (assignments, discussions, blogs, and other interactions).

VIII. Evaluation and Grade Assignment

The methods of evaluation and the criteria for grade assignment are:

Attendance and Participation (90 pts)
You are expected to attend all class meetings and participate in our weekly discourse on teaching science, nature of science, and scientific inquiry.

Blog Assignment (10 pts):
Students will develop a presentation introducing themselves to the other members of the class. Please include a picture of yourself so everyone can connect your name with your face. Share about your background, hobbies, motivation for pursuing a graduate degree, future career goals and aspirations, if you are a current teacher, tell a little about your class, if not, will you become one? Also, include your favorite education quote and your favorite educational book.

Chapter Readings/Article Reviews (40 pts)
You will be a part of a Professional Learning Community (PLC) by responding to various questions and posts on the Discussion Forum via Blackboard (Bb). The promptness and initiative of participating in threaded discussions done in a timely fashion will demonstrate self-motivation. The delivery of your posts will address your attention to detail in terms of being grammatically correct with rare misspellings. You will make posts that are relevant to the original discussion by staying on topic. By contributing to the professional learning community, you will demonstrate an effort to further the development of a collaborative learning experience. You will write a one-paragraph reflection that addresses a given prompt. Then you will review two other students’ postings and post one response/comment to each student's post (Total of two replies). Your replies to other students’ posts only need to be about 1-2 sentences. You can feel free to provide/post responses to more than two classmates' postings to enhance a discussion; however, you will only receive credit for replying to two classmates' posts. Remember to be courteous and respectful to all peers and in your responses to postings. Professionalism is expected at ALL times.

Reflective Journals (35 pts)
Teacher as a reflective practitioner. The purpose of this assignment is to engage you in reflective exploration of your practice, the curriculum orientation(s) under which you make decisions, and possible alternatives or directions for you to consider in your own practice. You will keep a reflective journal of your experiences in the course and of concepts learned. You should make an entry into your journal as instructed and reflect on something that “grabbed” you the most from readings/activities/videos/scientific inquiry investigations, etc. and you fully intended to use in your class (present & future)! For your final reflection, you will post a reflection in your journal about teaching science.
Follow the theses discussed in class and include critical insight into your emerging understanding of your practice in relation to the themes. Do not simply summarize the content of the class.

Service Learning Project (25 pts) — [All Students!]
All students are required to participate in the service learning project for the community this semester. You will host a ‘book talk’ table at the 2017 regional science fair AND/OR serve as a volunteer/judge for the regional science fair:

Friday, Jan. 27 – Volunteer TAMUCC 12:00 p.m. – 9:00 p.m.
Saturday, Jan. 28 – Volunteer TAMUCC 7:30 a.m. – 9:00 p.m.

Complete a one-page reflection of your experiences at this event.

‘Book Talk’ Presentation + Paper: Analysis Paper of Personal Reflections of a Trade Book (25 pts)
Book talking is one of the most effective ways to get kids reading. You will give a 3-minute book talk on a trade book of your choice. The object of a book talk is to convince the listener to read the book you are recommending. This book talk is essentially a persuasive speech to convince the listener that they should read a specific book. A book talk is very similar to a trailer for a film, which shows you just enough information to convince you that you should watch the movie. In addition, you will submit a 2-page analysis of your personal reflections of your trade book and how it can be utilized in the science classroom. This is not a book review. More details will be provided in class and on Blackboard.

Engineering Editorial Assignment (25 pts):
Students will research about an engineering invention or accomplishment. They will develop a persuasive argument on why their invention or accomplishment is the most important. They will also find a trade book about their invention or accomplishment. You will present both a book talk on the book and your letter to the class. More details will be provided in class and on Blackboard.

Probe & 5-E Lesson Plan (25 pts):
Select two probes to administer to at least five children or one class period. Develop a summary of their responses. Then compare their summary to the research finding in the Teacher notes for that probe? Develop a 5-E lesson plan to help the students to develop the current science understanding. More details will be provided in class and on Blackboard.

5-E Lesson Plan (25 pts):
Students will develop an engaging, inquiry-based science lesson plan (5-E) that incorporates a trade book of their choice. Students will designate a specific grade level for their lesson plan based on the state science TEKS and NGSS, utilizing science process and concept TEKS. A 5-E lesson plan template will be provided. You will present part of your lesson in class. More details will be provided in class and on Blackboard.
Research-Based Paper & Poster Presentation (75 pts):
Students will research a topic concerning science literacy and trade books. Paper should be a minimum of 7 pages, but no more than 10 pages. Use at least 6 references, with a minimum of 4 peer-reviewed articles from professional educational journals, written within the past five years, and books.

- The paper must include the following subheadings in bold:
 1. **Title Page** – Include name of Trade Book, your name, course name, my name, semester/year *(Cover Page)*
 2. **Introduction** – Discuss your motivation/personal interest for selecting this trade book; What contributions to science does this book make? What is the importance of educating students utilizing this trade book? *(Pages 1-2)*
 3. **Review of the Literature** – Discuss content analysis; any book reviews on this trade book; any information as to how this book has been utilized in the past for teaching science; etc. *(Pages 3-6)*
 4. **Discussion** - Discuss how students’ understanding of the concepts covered in the trade book will improve their learning about these concepts (e.g. science, history, math, etc.); Consider and address the interdisciplinary connections you can make for this trade book; discuss the content analysis for this trade book; what strategies can be utilized to teach these concepts using this trade book. Provide information about your 5E lesson plan that complements this trade book. *(Pages 7-8)*
 5. **Conclusion** - Explain the utility/benefits for incorporating trade books when teaching and learning in the science classroom. Make reference to the state TEKS, national science education standards, 5-E instructional model. Discuss your ideas for sharing your lesson plan, utilizing this project with other science teachers (or teachers in other disciplines) at your campus. *(Pages 9-10)*
 6. **References** – Final page of paper; 12 pt. font, single-spaced *(Final page)*

- You must properly cite your sources/references using APA 6th Edition format. *(See APA 6th edition text.)*
- Paper should be written in Times New Roman, 12 pt. font double-spaced.
- Your presentation should follow the example posted in BB9.

Conference Proposal (25 pts) – [Doctoral Students Only!]
Doctoral students will be required to prepare a conference proposal for submission to a local, state or national science teachers, science education, and/or literacy conference (e.g. CAST, NSTA, CAMT, TALE, ME by SEa). The proposal will include an inquiry-based science lesson plan that incorporates a trade book and the state and national standards, TEKS and NGSS. This assignment is **DUE:** – Tuesday, May 9
**Masters’ students you are welcome to submit a conference proposal, however this is not a course requirement for you. You will receive extra credit points for completing this assignment.

Name of Assignments:
All assignments must be named in the following with no spaces between words:
Assignmentname_Firstname.Lastname --Ex: ConferenceProposal_CindyHopkins

Grading: EDCI 5390/6390
- Attendance & Participation: 90
- Blog Assignment #1: 10
- Reading/Articles: 40
- Reflective Journals: 35
- Service Learning Project: 25
- Book Talk & Paper: 25
- Engineering Editorial: 25
- Probe & 5-E Lesson Plan: 25
- 5-E Lesson Plan: 25
- Research Paper & Presentation: 75

TOTAL

Grading Scale
Course grades are assigned according to percentage of points earned over points possible.

Grades:
- A = 92% - 100%
- B = 84% - 91%
- C = 76% - 83%
- D = 68% - 75%

* Service Learning Projects – 2017 Coastal Bend Regional Science Fair (REQUIRED)
**Professional Development Opportunity – Literacy Conference (Feb. 2017) (EXTRA CREDIT)
***Doctoral students only! Doctoral students will be required to submit a conference proposal for this course (REQUIRED). Format of proposal ready for submission will be decided by the selected education organization and discussed with students.

IX. **Course Schedule and Policies**

Attendance/tardiness
Attendance is expected at all classes. There is a high positive correlation between consistent, punctual attendance and higher course grades. It is virtually impossible to receive an A in the course if there are absences and/or lateness. Attendance will be recorded for this class. Points will be deducted for class absences. Notification of an absence does not constitute a class waiver.

Late assignments
Late assignments will not receive full credit. A deduction of 10% per day will be applied to any late assignment. Communicating an excuse for a late assignment does not constitute a waiver of the deadline or avoid the deduction.
Extra Credit
See above opportunities **

Make-up Exams: NA
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Course Topic</th>
<th>Assignment/Task</th>
</tr>
</thead>
</table>
| 1 | Jan. 24| *Course Expectations, History of the use of Trade Books, Science Literacy, NSTA Position Paper*
 - Welcome & Introductions
 - Syllabus & Calendar Overview
 Class Activity & Discussion
 - 5-E Instructional Model
 - Model Book Talk – Energy Island
 - Homework | • Blog Assignment 1 – Introductory PPT to Class |
| 2 | Jan. 31| ONLINE | • Read Article #1 & #2
 • Discussion Board #1
 • Journal Reflection #1 |
| 3 | Feb. 7 | Why use trade books?, How to select trade books?, National and State Standards
 Class Presentations - Blog Assignment
 Class Discussion & Activity
 - Model Book Talk - The Inventor’s Secret
 - Model Lesson: Science with interdisciplinary connections - How Much is a Million | • Read chapter 1 – 3 in Creative Writing in Science
 • Work on Book Talk presentation |
| 4 | Feb. 14 | ONLINE | • Read Articles #3
 • Discussion Board #2
 • Journal Reflection #2 |
| 5 | Feb. 21 | Creative Writing in Science
 Class Presentations – Book Talks
 Class Discussion & Activity
 - Model Lesson: Electrical Circuits w/ science probe | • Work on your Engineering Editorial assignment |
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topic</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Discussion Boards #3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Journal Reflection #3</td>
</tr>
<tr>
<td>7</td>
<td>Mar 7</td>
<td>Creative Writing in Science</td>
<td>• Work on your probe assignment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Class Presentations – Engineering Editorial assignment</td>
<td>• Read Uncovering Student Ideas page 1-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Class Discussion & Activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Model Lesson: Squishy Circuits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>March 13-17, 2017 – Spring Break</td>
<td>No Class</td>
</tr>
<tr>
<td>8</td>
<td>Mar 21</td>
<td>Science Probes</td>
<td>• Work on 5E Lesson Plan – includes children’s literature, science probe, creative writing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Discussion Boards #4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Journal Reflection #4</td>
</tr>
<tr>
<td>9</td>
<td>Mar 28</td>
<td>ONLINE</td>
<td>• Work on 5E Lesson Plan – includes children’s literature, science probe, creative writing</td>
</tr>
<tr>
<td>10</td>
<td>Mar 28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Apr 4</td>
<td>• Class Presentations – 5E Lesson Plans</td>
<td>• Begin working on Collaborative Research Project</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Journal Reflection #5</td>
</tr>
<tr>
<td>12</td>
<td>Apr 11</td>
<td>• Class Presentations – 5E Lesson Plans</td>
<td>• Work on Collaborative Research Project</td>
</tr>
<tr>
<td>13</td>
<td>Apr 18</td>
<td>ONLINE</td>
<td>• Work on Collaborative Research Project</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Journal Reflection #6</td>
</tr>
<tr>
<td>14</td>
<td>Apr 25</td>
<td>• Class Presentations - Collaborative Research Project</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>May 2</td>
<td>Last Day of Class (Class Potluck)</td>
<td>• Journal Reflection #7 (Overall)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Class Presentations - Collaborative Research Project</td>
<td>• Complete Conference Proposal (Doctoral Students ONLY) [Submit by Tuesday, May 9]!</td>
</tr>
</tbody>
</table>
X. Course Textbook +

Book(s) Required

Recommended

XI. Bibliography

The knowledge bases that support course content and procedures include:

Journals:

Journal Articles by Dr. Jeffery

In Press
- McCollough, C., Jeffery, T., Moore, K., & Champion, J. (Accepted May 2016). Improving middle grades STEM teacher content knowledge and pedagogical practices through a school-university partnership. School-University Partnerships.

In Preparation
Jeffery, T.D., Hobson, L. Conoyer, S.J., Miller, K., & Leach, L. (Submitted November 2016). Examining EC-6 Pre-Service Teachers' Perceptions of Self-

Published

 Editors’ Choice.

XII. Course Policies

Academic Integrity/Plagiarism

University students are expected to conduct themselves in accordance with the highest standards of academic honesty. Academic misconduct for which a student
is subject to penalty includes all forms of cheating, such as illicit possession of examinations or examination materials, falsification, forgery, complicity or plagiarism. (Plagiarism is the presentation of the work of another as one's own work.) In this class, academic misconduct or complicity in an act of academic misconduct on an assignment or test will result in failure. See website http://judicialaffairs.tamucc.edu/.

Dropping a Class

I hope that you never find it necessary to drop this or any other class. However, events can sometimes occur that make dropping a course necessary or wise.

Please consult with me before you decide to drop to be sure it is the best thing to do. Should dropping the course be the best course of action, you must initiate the process to drop the course by going to the Student Services Center and filling out a course drop form. Just stopping attendance and participation WILL NOT automatically result in your being dropped from the class. Check the university academic calendar website for dates related to dropping a class with an automatic grade of "W" this term. See website http://www.tamucc.edu/academics/academic_cal.html.

Preferred methods of scholarly citations

Publication Manual of the American Psychological Association, Sixth Edition is the preferred method for citations within papers.

Classroom/professional behavior

All students are expected to act in a responsible manner with consideration of fellow students and toward TAMU-CC faculty and staff members. Specific rules and information is available in the TAMU-CC Student Handbook and available through the website http://judicialaffairs.tamucc.edu/studentcofc.html.

Cell Phone Usage During Class

Vigorously discouraged! Cell phone usage is prohibited during class unless special prior permission has been granted by Dr. Jeffery. This includes text messaging, talking, vibrating phones, checking email, responding to email, and/or all other uses to which such devices may be employed. EDCI 5390/6390 is a professional development course in the Department of Curriculum and Instruction at TAMU-CC. You are expected to demonstrate a level of professionalism.

Statement of Academic Continuity

In the event of an unforeseen adverse event, and classes could not be held on the campus of Texas A&M University–Corpus Christi; this course would continue through the use of Blackboard and/or email. In addition, the syllabus and class activities may be modified to allow continuation of the course. Ideally, University facilities (i.e., emails, web sites, and Blackboard) will be operational within two days of the closing of the physical campus. However, students need to make certain that the course instructor has a primary and a secondary means of contacting each student.
Grade Appeals
As stated in University Rule 13.02.99.C2, Student Grade Appeals, a student who believes that he or she has not been held to appropriate academic standards as outlined in the class syllabus, equitable evaluation procedures, or appropriate grading, may appeal the final grade given in the course. The burden of proof is upon the student to demonstrate the appropriateness of the appeal. A student with a complaint about a grade is encouraged to first discuss the matter with the instructor. For complete details, including the responsibilities of the parties involved in the process and the number of days allowed for completing the steps in the process, see University Rule 13.02.99.C2, Student Grade Appeals, and University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures. These documents are accessible through the University Rules Web site at http://www.tamucc.edu/provost/university_rules/index.html. For assistance and/or guidance in the grade appeal process, students may contact the Office of Student Affairs.

Disabilities Accommodations
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please call or visit Disability Services at (361) 825-5816 in CCH 116. See website http://disabilityservices.tamucc.edu/.

If you are a returning veteran and are experiencing cognitive and/or physical access issues in the classroom or on campus, please contact the Disability Services office for assistance at (361) 825-5816.