GEOL 3442 - GEOMORPHOLOGY
Department of Physical and Environmental Sciences
Fall 2016

A. COURSE INFORMATION
Course number/section: GEOL-3442.001
Class meeting time: Lecture, MW 2:00-3:15pm; Lab, M 12:00-1:50pm
Class location: Lecture, EN-101; Lab, CI-214
Course Website: Blackboard http://Bb9.tamucc.edu

B. INSTRUCTOR INFORMATION
Instructor: Dr. John Chesnut
Office location: CS-226
Office hours: Mondays 11 am-12 noon, Tuesdays 11 am-2 pm
Telephone: TBA
e-mail: John.Chesnut@tamucc.edu
Appointments: Additional hours available by appointment.

C. COURSE DESCRIPTION
Catalog Course Description
Study of landscapes and landforms at the surface of the Earth, and the processes and mechanisms by which they are developed. Prerequisite: GEOL 1403 or permission of instructor. SMTE 0094 is a co-requisite for this course. Documented completion of this safety training is required early in the semester for continued participation in this course. Safety training given during a laboratory meeting early in the semester is required for continued participation in this course.

Extended Course Description
Geomorphology is the study of landscapes and landforms at the surface of the Earth, and the processes and mechanisms that produce these features. The field has a broad interdisciplinary interest and relevance, indeed, almost any discipline that is concerned with what is happening at the surface of the planet may find a connection to geomorphology! Such disciplines include archaeology, civic/hazard planning, soil science, and hydrology to name just a few. In this course, we will examine geomorphic concepts from the micro- to continental scale to give you a broad overview of the discipline. At the same time, via a series of lab projects and our semester-long Analysis Project, we will work on developing and polishing practical skills that will be useful as you pursue a career in the sciences (or otherwise).
D. PREREQUISITES, COREQUISITES, EXPECTED SKILLS/KNOWLEDGE

Prerequisites
GEOL 1403 or permission of instructor

Corequisites
SMTE 0094

Expected Skills and Knowledge
Students in this class are expected to be completely familiar with material covered in GEOL 1403, also with the style and structure of a basic scientific report (like a lab science report). They are expected to be fluent in basic math skills including algebra and geometry/trigonometry, which will be used frequently. Finally, students should have basic skills with a computer spreadsheet program such as Microsoft Excel or similar, including how to build basic formulas, use built-in functions, reference values in other cells, and make simple plots to visually display data. Students are not expected to be experts but will need to put these skills to use immediately; hence, the need to come with them developed at least a basic level. Students will continue to develop and refine these skills throughout the semester.

E. REQUIRED TEXTBOOK(S), READINGS AND SUPPLIES

Required Textbook(s)

Supplies
Supplies are needed for this class include: Ruler marked in metric units, several colored pencils, scientific calculator or equivalent phone/tablet app, and laptop/personal computer (or flexibility to use school computer lab facilities).

F. STUDENT LEARNING OUTCOMES AND ASSESSMENT

Assessment is a process used by instructors to help improve learning. Assessment is essential for effective learning because it provides feedback to both students and instructors. A critical step in this process is making clear the course’s student learning outcomes that describe what students are expected to learn to be successful in the course. The student learning outcomes for this course are listed below. By collecting data and sharing it with students on how well they are accomplishing these learning outcomes students can more efficiently and effectively focus their learning efforts. This information can also help instructors identify challenging areas for students and adjust their teaching approach to facilitate learning.

By the end of this course, the successful student will be able to:

1. demonstrate a broad understanding of the major geomorphic processes and mechanisms that shape the face of the Earth, and the characteristic landscapes and landforms which they produce;

2. demonstrate basic geomorphic observations skills, and be able to describe, measure,
analyze, and interpret geomorphic and other geologic systems on this planet; and

3.) show advancement in developing and refining practical skills useful to pursue a career in the sciences, including include scientific and report writing, critical reading and evaluation, observation and data collection, simple data analysis and interpretation, basic math and computer skills, library research, public presentation, project/time management, and effective group-working skills.

G. INSTRUCTIONAL METHODS AND ACTIVITIES

This course includes both lecture and laboratory components, which are tightly integrated. Lab activities vary ranging from indoor map/image observation and measurement exercises, to hands-on lab experiments, to several local area field trips for hands-on field observations and data collection. Many of these labs are designed around a paradigm you will see over and over again throughout the semester—that of measuring, gathering, and collecting a geomorphic data set, and then trying to analyze, interpret, understand, and explain it in a geomorphic light. These labs serve as examples and practice for the Semester-long Analysis Project Report and Presentation (further details about this below). In addition to the five hours of direct contact time weekly, much communication and discussion will take place out-of-class in our class Blackboard discussion forum.

H. MAJOR COURSE REQUIREMENTS AND GRADING

The following table indicates the breakdown of your overall class grade.

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>POINTS</th>
<th>% of FINAL GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed class, lab, and field trip assignments [throughout semester]</td>
<td>300</td>
<td>30%</td>
</tr>
<tr>
<td>Attendance [throughout semester]</td>
<td>50</td>
<td>5%</td>
</tr>
<tr>
<td>Analysis Project Presentation [Nov 26-Dec 12]</td>
<td>50</td>
<td>5%</td>
</tr>
<tr>
<td>Hour Exam 1 [September 28]*</td>
<td>150</td>
<td>15%</td>
</tr>
<tr>
<td>Hour Exam 2 [November 2]*</td>
<td>150</td>
<td>15%</td>
</tr>
<tr>
<td>Hour Exam 3 (Final Exam) [December 12, 1:45-4:15 pm]*</td>
<td>100</td>
<td>10%</td>
</tr>
<tr>
<td>Analysis Project Final Draft [Nov 26– Dec 12]</td>
<td>200</td>
<td>20%</td>
</tr>
</tbody>
</table>
* The hour exams are cumulative, but mostly focused on the material since the previous exam. The exams are scheduled after every 7-8 lecture blocks to keep the amount of material manageable. Material that is included in any aspect of the class (lecture, lab, field trips, Blackboard, etc.) may appear on the exams.

All assignments and activities will be evaluated and assigned grades using the generalized rubric specified in the table below.

100%	superior explanation and supporting materials (samples, examples, data, figures, etc.); unusual and original insight and analysis; goes well beyond minimum required for assignment
90%	good solid job on explanation with very good to excellent supporting materials; excellent reasoning or analysis; goes beyond minimum required for the assignment
80%	good solid job with decent supporting materials; does what the assignment asks; decent reasoning or explanations
70%	decent explanation, but too general, and/or incomplete supporting materials, and/or some inaccuracies or flaws in reasoning, and/or coverage is accurate but cursory, and does not meet the minimum required for a complete answer
0-60%	answer missing, and/or does not effectively address assignment or answer question, and/or fails to support explanations/analyses with data or examples, and/or unclear explanations, and/or inadequate understanding, and/or major flaws in reasoning or explanations

Assignments are weighted differently according to the time, effort, and energy involved. Almost all assignments will be turned in electronically (via Blackboard) with the exception of a few that are done in hard copy format. Late assignments will not be accepted.

Semester-long Analysis Project Report and Presentation

A significant part of your entire class grade will be accounted for by our semester-long Analysis Project, and the associated class presentation at the end of the semester. The point of this analysis project is for you to pull together and apply the geomorphic knowledge you accumulate during the semester, but in a practical, hands-on manner. This Analysis Project will require a significant amount of effort and time on your part, and some amount of imagination, too!

The final draft of the Analysis Project should consist of ten written pages, plus an appendix that includes an unlimited number of figures, data tables, bibliography, etc. to support your work. To help keep on track with the project, there will be a series of graded checkpoints throughout semester, and these are listed in bold in the course schedule.

By calling this the “Analysis Project”, I hope to indicate to you from the very beginning that I am not looking for a typical research report for which you would read journal articles or books, and then summarize and synthesize the material. A little bit of research will be needed at the beginning as you choose a project focus, do initial investigation, and find data sources. But otherwise, the crux of this report will be about geomorphic data that you collect, produce, or measure, and then your own interpretation and analysis of that data. This will
involve some number crunching and best guess estimates (perhaps about volumes, orientations, fluxes, rates, geospatial characteristics, etc.) to produce something at least semi-quantitative. In fact, you will see example after example throughout the semester of how to develop and structure your project, and these will come from our many lab exercises and field trips that are designed to serve as mini-examples of how your Analysis Project should be developed.

While this task might seem daunting at first, and you might doubt you own capability to produce anything useful, I assure you, you can do this, really! A large part of this is simply deciding on a focus theme, and starting to work on this in a timely manner. In the first few weeks of the semester, I will make available copies of some Analysis Project abstracts from past semesters to help guide you. But to start, a few examples of themes include:

- a regional-scale correlation between landforms, lithology, structure, climate, etc.
- a stream profile or network analysis
- a comparison analysis between similar geomorphic environments, but from different locations; for example, you could look at coastal geomorphology along the TX coast vs. someplace else
- an analysis of landscape hazards, for example, slope failures or flooding potential, based on air photos, topo maps, DRGs (digital raster graphics) or similar
- an analysis of historical landscape change via air photos and topo maps, esp. obvious in coastal environments or due to river channel migration
- a comparative morphometric study of some particular geomorphic feature like glacial drumlins in different regions (or perhaps even the same region)
- for the intrepid/curious/motivated, hands-on field- or lab-based projects are a possibility; for example, you could:
 - undertake a small, monitoring study to examine sand dune migration rates or beach profiles over a couple of months
 - compare/contrast soil profile development at a few locations either by digging small trenches, or using preexisting cuts
 - examine abrasion rates ("erosion") as related to lithology; for example, you could use entrance way steps on buildings of known age, but of differing construction material
 - examine the angle of repose or strength of a sediment under differing conditions (wet/dry, finer/coarser, changing overburden, etc.)
 - replicate and speed up a weathering process like insolation (for example, via a campfire), and see how it affects materials of differing lithology

These field- and lab-based projects are usually fun (and enlightening!), but it is absolutely critical that you get a jump on them immediately. If you do want to undertake a project of this nature, it must actually be underway, and you must show me a definitive plan/timeline by mid-September. This puts an extra burden on you as our 1-page intended focus doc is not due till the end of September, and the project status check interviews will not actually take place till a few weeks later. But the point with field- and lab-based projects is that unforeseen hiccups or problems are par for the course so extra time is needed to recover and get back on track. An early start is especially important for monitoring-type studies because it adds a through-time component that simply is not possible with a single (or few) trips to the field. In sum, if you are interested in a field- or lab-based project, fantastic, but it will require you to be proactive about getting it going early.
I. **COURSE CONTENT/SCHEDULE**

Our tentative schedule is provided in the table below. Though the dates of the lecture material may shift around a bit according to our tempo, the items that are bolded and centered in the “What” column are fixed in time, and they will not move. Lab blocks and field trips are shaded in light gray. Note that to make field trips possible, we will combine the lab and lecture blocks into a single 3.25 hour block that runs from 10:00 am - 3:15 pm.

<table>
<thead>
<tr>
<th>WEEK</th>
<th>DAY</th>
<th>TOPIC</th>
<th>CHAPTER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wed. 8/24</td>
<td>Administration and class intro;</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Mon. 8/29</td>
<td>Lab: Safety presentation/ Lecture: Brief history of geomorphology and force/response factors</td>
<td>Chaps. 1-2</td>
</tr>
<tr>
<td></td>
<td>Wed. 8/31</td>
<td>Weathering processes</td>
<td>Chap. 3, p. 47-64 and Chap. 4, p. 85-100</td>
</tr>
<tr>
<td>3</td>
<td>Mon. 9/5</td>
<td>LABOR DAY – NO CLASSES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wed. 9/7</td>
<td>Soils and pedology</td>
<td>Chap. 3, p. 64-83</td>
</tr>
<tr>
<td>4</td>
<td>Mon. 9/12</td>
<td>Lab: Topographic maps and air photos / Lecture: Soils and pedology cont.</td>
<td>Chap. 3, p. 64-83</td>
</tr>
<tr>
<td></td>
<td>Wed. 9/14</td>
<td>Soils and pedology cont.</td>
<td>Chap. 3, p. 64-83</td>
</tr>
<tr>
<td>5</td>
<td>Mon. 9/19</td>
<td>Field Trip #1 – Weathering Rates at Old Bayview Cemetery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wed. 9/21</td>
<td>Basics of scientific writing and spreadsheet usage</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mon. 9/26</td>
<td>Lab: Mass movement and slope failure hands-on experiment / Lecture: slopes and mass movement</td>
<td>Chap. 4, p. 100-147</td>
</tr>
<tr>
<td></td>
<td>Wed. 9/28</td>
<td>Hour Exam #1. 1-page Analysis Project intended focus summary due by 2:00 pm</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Mon. 10/3</td>
<td>Field trip #2—Fluvial, slope failure, and soils at Hazel Basemore County Park (Calallen)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weds. 10/5</td>
<td>Lecture: Drainage basins</td>
<td>Chap. 5</td>
</tr>
<tr>
<td>8</td>
<td>Mon. 10/10</td>
<td>Lab: Fluvial drainage basins / Lecture: Fluvial processes; The graded stream concept</td>
<td>Chap. 6</td>
</tr>
<tr>
<td></td>
<td>Weds. 10/12</td>
<td>Fluvial landforms</td>
<td>Chap. 7</td>
</tr>
<tr>
<td>9</td>
<td>Mon. 10/17</td>
<td>Lab: Stream order / Lecture: Coastal Geomorphology</td>
<td>Ch. 13</td>
</tr>
<tr>
<td></td>
<td>Wed. 10/19</td>
<td>10 minute Analysis Project status report interview</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Mon. 10/24</td>
<td>Lab: Rio Grande Head to Toe Part I / Lecture: Coastal Geomorphology</td>
<td></td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
<td>Activity</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Wed. 10/26</td>
<td>Aeolian geomorphology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mon. 10/31</td>
<td>Lab: Rio Grande Head to Toe Part II / Lecture: Glaciers and Glacial Mechanics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wed. 11/2</td>
<td>Hour Exam #2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mon. 11/7</td>
<td>Field Trip #3: Coastal Geomorphology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weds. 11/9</td>
<td>Glacial Processes and Landforms</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Mon. 11/14</td>
<td>Lab: Glacial Retreat / Lecture: Periglacial geomorphology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weds. 11/16</td>
<td>Karst and Cave Geomorphology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mon. 11/21</td>
<td>Lab: Article Discussion – South Texas Sand Sheet / Lecture: Karst and Cave Geomorphology cont.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weds. 11/23</td>
<td>Reading Day: No Class.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sat. 11/26</td>
<td>Complete first draft of Analysis Project report due by 5:00 pm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mon. 11/28</td>
<td>Lab: Peer review of Analysis Project Reports / Lecture: Analysis Project student presentations (1 of 3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weds. 11/30</td>
<td>Lecture: Analysis Project student presentations (2 of 3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mon. 12/5</td>
<td>Lecture: Analysis Project student presentations (3 of 3) / Lecture: Geomorphology and Climate through Time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weds. 12/7</td>
<td>Reading Day: No Class.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sat. 12/12/10</td>
<td>Final draft of Analysis Project due by 5:00 pm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mon. 12/12</td>
<td>1:45-4:15 pm Hour Exam #3 (Final Exam)</td>
<td></td>
</tr>
</tbody>
</table>

J. COURSE POLICIES

Attendance/Tardiness

Your attendance and on-time arrival for all class-related activities is expected. I count on you being there as we often split up into pre-defined groups for activities. So if you do not attend, or come in late, this throws a wrench in the works for your classmates (and me!). This is so important that five percent of your overall class grade is directly related to attendance. The great news is that this is absolutely the easiest assignment of the semester! I will try to take attendance frequently, but depending on circumstance, it may not be possible for every class lecture/lab session. Note that if you are not present when I take attendance, for example, if you arrive late, you will unfortunately be recorded as absent.

If you have a University-approved reason for an absence (for example, you have to travel with an athletic team), it is your responsibility to contact me well ahead of time to make
arrangements. And occasionally, we all have emergencies, for example, a death in the family. I am not unreasonable so if something like this happens to you, inform me as soon as possible so we can make appropriate arrangements. Please note that our definitions of “emergency” may vary, and I may not consider your situation an “emergency”.

Participation
Your proactive and positive participation in all class-related activities is expected. Similar to attendance, I also consider this very important, and indeed, five percent of your overall class grade is based on your participation.

What do I mean by **proactive and positive participation**? I am talking about things that involve working together well from the scale of small groups to the whole class. Here are some examples. In class and lab, are you actively engaged and working with your teammates, or is somebody else in the group carrying the load? During labs and field trips, some teams end up with more work than others, and our first field trip to the Old Bayview Cemetery is a good example of this as grave markers are not equally distributed throughout the cemetery. If your team happens to get a light workload in such a situation, do you proactively help out the other teams so we can all finish earlier as a class? During field trips, do you keep up with the group, and actively help with carrying gear, and making observations and measurements? Do you actively participate and contribute to discussions in class, lab, and on Blackboard? When I request information or data from you, for example, from one of our field trips or activities, do you respond in a timely manner, or do I have to keep pestering you to get it? I hope you can see the common theme among these examples— that they will help us work together better as a team so that each of you gets as much out of the class as possible.

Late Work and Make-up Exams
Late assignments will not be accepted. Most assignments will be turned in electronically via Blackboard, and when the deadline arrives, the assignment turn-in mechanism disappears so please start your assignment upload processes with plenty of time. Make-up exams will not be given.

Extra Credit
Once in a while, I will offer extra credit opportunities for tasks or work that will be of benefit to the whole class. For example, we often collect data in small teams for lab projects, but then pool it together into a larger data set for use by the whole class. So I may request that somebody take charge of organizing and carrying out such a data pooling task. Or I may solicit photos from field trips that will be posted on Blackboard for the benefit of all, for example, to enhance report write-ups. If you are interested in such an opportunity, you should respond immediately as the opportunity will disappear quickly. Also, you must be willing and able to provide the extra effort and flexibility needed to meet crazy short turn-around times like same-day or next-day. These crazy short turn-around times are necessary because report write-ups are usually due one week after they are assigned. So the data must be made available to the class as quickly as possible.

Cell Phone and Laptop Use
Please keep cell phones and other gadgets turned off and stowed away. You may use a laptop or tablet computer to take notes, but please refrain from using them for activities that are NOT class-related (for example, e-mail, web surfing, social networking, etc.).

Food in Class
Food and beverages of any type and any form are not permitted in lab settings, and this is a
TAMU System-wide policy. Regarding lecture classrooms, please do not bring food to lectures. You may bring a beverage in to lectures provided you consume it discretely.

Out-of-Class Communication by Blackboard and E-mail

I will post most public, out-of-class announcements on Blackboard. In fact, you will land on the "Announcements" page every time you log into our course website on Blackboard. I expect you to log into Blackboard regularly (i.e. at least once per day) to keep up to date.

In some cases when time sensitive information is involved, I will not post on Blackboard, but instead write you directly as a group by e-mail. TAMUCC ITS can only guarantee e-mail delivery as far as its own e-mail systems (i.e. your islander.tamucc.edu e-mail account). Thus, if you choose to use a different e-mail provider (for example, by forwarding your mail elsewhere like Hotmail.com, Yahoo.com, or Gmail.com), there is a strong possibility that my e-mail to you may be delayed by many hours. Indeed, this frequently happens with Hotmail.com and Yahoo.com e-mail addresses based on my past experience. In some cases, my mail to you may be completely rejected with no warning provided whatsoever. For this reason, if you choose to use an e-mail provider besides TAMUCC ITS, you also accept the responsibility that you may receive e-mail communications late, or not receive them at all.

Lecture Slides, Audio Recordings, Other Electronic Resources, and Limitations on Their Use

Throughout the semester I will make available to you a variety of materials in electronic format such as lecture slides, lecture audio recordings, and other materials. I do this to help you get as much as possible out of the class. However, I explicitly limit these materials to your personal use for the current semester. **You may not distribute, disseminate, sell, pass on, upload, post, share, make available, etc. any of this material by any means without my explicit, written permission.** Many thanks in advance for respecting these limitations on use.

Regarding lecture slides, I will post PDF files of my slides in two slides per page format on Blackboard before the start of class. Regarding audio recordings of my lectures, I will post them in MP3 format on Blackboard within a few days following each lecture.

Labs, Field Trips, and Safety

Lab protocol and safety best practices will be delivered this semester via the mandatory SMTE 0094 Geology Lab Safety Seminar, a corequisite online class that you were required to register for along with this class. You must complete the SMTE 0094 online course, and bring me proof (hardcopy documentation) that you successfully completed this course BEFORE our first lab session on xx September. Note that you will also have to supply the same documentation for all of your geology classes with a lab so do print out multiple copies when you complete the online course.

Though many of our lab sessions will take place indoors, we will also take three local field trips by combining our Monday lab and lecture sessions into a single, 3.25 hour time block. Current plans call for these fieldtrips to occur on xx Sep, xx Sep, and xx Nov. Regarding field trips, appropriate footgear and attire is critical. Footgear should be comfortable, but secure (like boots or tennis shoes, but not flip-flops, sandals, or similar). You should also dress appropriately for protection from the sun, insects, and vegetation (long sleeves, pants, hat, sunglasses, sunscreen, etc.).

Whether we stay in the lab or go to the field, your safety during these events is of the utmost importance—even beyond the science! While I don’t expect any unsafe or dangerous situations, use common sense if something unexpected develops, and let me know about it
Field trips are one of the great things about studying geology, but please keep in mind that our presence off-campus entirely reflects back on the Geology Program and the University as a whole. So things that might be completely innocuous, or “just a joke”, might unfortunately be misinterpreted in a negative way by others if they are observing from afar. Many thanks in advance for helping us to put our best foot forward as a program and a university!

Academic Honesty and Working Together
Much of the time you’ll be working together in small groups or teams to observe, brainstorm, analyze, interpret, report, etc. And in many cases, we’ll be sharing the exact same data sets, photos, samples, and other resources. So undoubtedly results will be similar in many cases. However, for any assignments that you are supposed to turn in (for example, lab write-ups, figures and diagrams, reports and papers, other misc. assignments), they should be produced by you *independently*. Sharing computer files, templates, or similar, at any level of completion, does not count as independent work, and is considered academic dishonesty. When this occurs, I am obligated to report it, and I will do so. If there is ever a question about what constitutes independent work, or if you can work together or not, simply ask me for clarification, or choose the more conservative option.

Plagiarism
The University provides us a tool to help uncover plagiarism, and if I encounter it while reviewing your work, I am obligated to report it. The tool is called Turnitin, and you can read about it at https://distance-education.tamucc.edu/turnitin.html. Explanatory resources about what constitutes plagiarism can be found at many websites, one good source being the http://www.plagiarism.org/ website. Nonetheless, the boundaries are not always perfectly black and white, and so if you have any doubts or reservations, you should take the most conservative approach, or come talk to me for additional guidance. In general, I do not expect this to be an issue because all the reports and write-ups we prepare are almost entirely focused around our own data (i.e. they do not, and should not, require external research).

K. COLLEGE AND UNIVERSITY POLICIES

- **Academic Integrity (University)**
 University students are expected to conduct themselves in accordance with the highest standards of academic honesty. Academic misconduct for which a student is subject to penalty includes all forms of cheating, such as illicit possession of examinations or examination materials, falsification, forgery, complicity or plagiarism. (Plagiarism is the presentation of the work of another as one’s own work.) In this class, academic misconduct or complicity in an act of academic misconduct on an assignment or test will result in a failing grade.

- **Classroom/Professional Behavior**
 Whenever we get together to learn (whether it be in the classroom, the lab, or the field) courtesy, collegiality, and respect for one another are required. If for some reason you feel this is not happening, please, let me know about it, and I’ll try to remedy the situation.

 Texas A&M University-Corpus Christi, as an academic community, requires that each individual respect the needs of others to study and learn in a peaceful atmosphere. Under Article III of the Student Code of Conduct, classroom behavior that interferes with either (a) the instructor’s ability to conduct the class or (b) the ability of other students to profit from the instructional program may be considered a breach of the peace and is subject to
disciplinary sanction outlined in article VII of the Student Code of Conduct. Students engaging in unacceptable behavior may be instructed to leave the classroom. This prohibition applies to all instructional forums, including classrooms, electronic classrooms, labs, discussion groups, field trips, etc.

- **Statement of Civility**
 Texas A&M University-Corpus Christi has a diverse student population that represents the population of the state. Our goal is to provide you with a high quality educational experience that is free from repression. You are responsible for following the rules of the University, city, state and federal government. We expect that you will behave in a manner that is dignified, respectful and courteous to all people, regardless of sex, ethnic/racial origin, religious background, sexual orientation or disability. Behaviors that infringe on the rights of another individual will not be tolerated.

- **Deadline for Dropping a Course with a Grade of W (University)**
The grade of W will be assigned to any student officially dropping a course. Please consult with the instructor before you decide to drop to be sure it is the best thing to do. Just stopping attendance and participation WILL NOT automatically result in your being dropped from the class. Should dropping the course be the best course of action, visit the Office of the University Registrar for the Course Drop Form that must be submitted. No student is eligible to receive a W without completing the official drop process by this deadline. Please consult the Academic Calendar (http://www.tamucc.edu/academics/calendar/) for the last day to drop a course.

- **Grade Appeals (College of Science and Engineering)**
 As stated in University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures, a student who believes that he or she has not been held to appropriate academic standards as outlined in the class syllabus, equitable evaluation procedures, or appropriate grading, may appeal the final grade given in the course. The burden of proof is upon the student to demonstrate the appropriateness of the appeal. A student with a complaint about a grade is encouraged to first discuss the matter with the instructor. For complete details, including the responsibilities of the parties involved in the process and the number of days allowed for completing the steps in the process, see University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures. These documents are accessible through the University Rules website and the College of Science and Engineering Grade Appeals website, respectively, at:

 http://www.tamucc.edu/provost/university_rules/index.html
 & http://sci.tamucc.edu/students/GradeAppeal.html.

 For assistance and/or guidance in the grade appeal process, students may contact the chair or director of the appropriate department or school, the Office of the College of Science and Engineering Dean, or the Office of the Provost.

- **Disability Services**
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning
environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please call (361) 825-5816 or visit Disability Services in Corpus Christi Hall 116.

If you are a returning veteran and are experiencing cognitive and/or physical access issues in the classroom or on campus, please contact the Disability Services office for assistance at (361) 825-5816, or visit the website at:

http://disabilityservices.tamucc.edu/

• Statement of Academic Continuity
In the event of an unforeseen adverse event, such as a major hurricane and classes could not be held on the campus of Texas A&M University–Corpus Christi; this course would continue through the use of Blackboard and/or email. In addition, the syllabus and class activities may be modified to allow continuation of the course. Ideally, University facilities (i.e., emails, web sites, and Blackboard) will be operational within two days of the closing of the physical campus. However, students need to make certain that the course instructor has a primary and a secondary means of contacting each student.

L. OTHER INFORMATION
• Academic Advising
The College of Science & Engineering requires that students meet with an Academic Advisor as soon as they are ready to declare a major. The Academic Advisor will set up a degree plan, which must be signed by the student, a faculty mentor, and the department chair. Meetings are by appointment only; advisors do not take walk-ins. Please call or stop by the Advising Center to check availability and schedule an appointment. The College’s Academic Advising Center is located in Center for Instruction 350 or can be reached at (361) 825-3928.

M. GENERAL DISCLAIMER
I reserve the right to modify the information, schedule, assignments, deadlines, and course policies in this syllabus if and when necessary. I will announce such changes in a timely manner during regularly scheduled lecture periods.