Introduction to Problem Solving with Computers I COSC 1435
School of Engineering & Computing Sciences
Spring 2018

A. COURSE INFORMATION

Course number/section: COSC 1435.001
Class meeting time: MW 2:00pm - 3:15pm
 COSC 1435.201 M 3:30pm - 5:20pm (Lab)
Class location: OCNR-133 (Lecture); CI-226 (Lab)
Course Website: http://bb9.tamucc.edu

B. INSTRUCTOR INFORMATION

Instructor: Minhua Huang
Office location: EN 314A
Office hours: M,W: 1:00pm — 1:50pm, W,Tu: 3:20pm — 5:00pm
Telephone: 361-825-3265
e-mail: minhua.huang@tamucc.edu
Appointments: By e-mail

C. COURSE DESCRIPTION

Catalog Course Description
A broad introduction to many computer science topics including: algorithms, problem solving, operating system concepts, computer architecture, and programming languages.

Extended Course Description
A broad introduction to Computer Science. Many important concepts underlying computer science are covered. This includes the algorithmic foundations of computer science and the expression of algorithms as pseudocode. A number of algorithms are examined including sequential search, find greatest, selection sort, and binary search. The time efficiency of algorithms and Big-O classification are discussed. Computer hardware concepts are studied including binary numbers, Boolean logic, gates, and circuits such as compare for equality and addition circuits. The construction of a CPU from basic circuits is examined. The course includes a weekly 2-hour lab that provides experience with the concepts covered in the lectures.

D. PREREQUISITES AND COREQUISITES

Prerequisites
MATH 1314 (College Algebra) or placement beyond MATH 1314. Additionally, I expect you to be able to use a computer for your work. You should be able to do word processing, use email, and use the Internet. You do not need to have any prior programming experience or
any prior experience with the UNIX operating system.

Corequisites
None

E. REQUIRED TEXTBOOK(S), READINGS AND SUPPLIES

Required Textbook(s)
- Starting Out with C++: From Control Structures through Objects, 8th Edition by Tony Gaddis, Addison-Wesley (ISBN: 0-13376939-9)

Optional Textbook(s) or Other References
None

Supplies
None

F. STUDENT LEARNING OUTCOMES AND ASSESSMENT

Assessment is a process used by instructors to help improve learning. Assessment is essential for effective learning because it provides feedback to both students and instructors. A critical step in this process is making clear the course’s student learning outcomes that describe what students are expected to learn to be successful in the course. The student learning outcomes for this course are listed below. By collecting data and sharing it with students on how well they are accomplishing these learning outcomes students can more efficiently and effectively focus their learning efforts. This information can also help instructors identify challenging areas for students and adjust their teaching approach to facilitate learning.

By the end of this course, students should be able to:

1. Understand the algorithmic foundations of Computer Science and be able to express algorithms in pseudocode.
2. Understand the design of basic searching and sorting algorithms (linear search, binary search, and selection sort).
3. Understand the time and space efficiency of algorithms and Big-O notation.
4. Understand how binary numbers are represented, basic concepts of Boolean logic and logic gates, and understand the equality and addition circuits.
5. Understand the von Neumann model of computer organization.
6. Design and develop basic computer programs using high level programming language (sequence, selection, and iteration structures).
7. Be able to design and implement programs that use arrays and functions.
Assessment of objectives will be conducted through lab activities, homework, quizzes and exams.

G. INSTRUCTIONAL METHODS AND ACTIVITIES

This course will be a mixture of lectures and discussions. The student is expected to actively participate in all class and lab activities. The student is also expected to read the book and do outside work on assignments.

H. MAJOR COURSE REQUIREMENTS AND GRADING

This is an introductory course. However, this is a difficult course that demands all students attend all classes! Regular completion of all reading, homework, and other outside assignments, are absolutely essential for success in this course. Your course grade will be decided on your performance in the lab activities, homework, quizzes, two mid-term exams, and the final exam. The distribution of points is as follows:

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>% of FINAL GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam 1</td>
<td>15</td>
</tr>
<tr>
<td>Exam 2</td>
<td>15</td>
</tr>
<tr>
<td>Final Exam</td>
<td>20</td>
</tr>
<tr>
<td>Lab Activities</td>
<td>10</td>
</tr>
<tr>
<td>Homework</td>
<td>30</td>
</tr>
<tr>
<td>Quizzes</td>
<td>10</td>
</tr>
</tbody>
</table>

Grading scale: A: 100-90, B: 89-80, C: 79-70, D: 69-60, and F: 59-0.

Homework: Approximately 10 - 12 homework assignments will be given.

Exams: The first exam will be given on Feb 21, 2018, the second exam will be given on Apr 4, 2018 during the scheduled class time, and the final exam will be given on May 9, 2018 from 1:45pm – 4:15 pm.
I. Course Content/Schedule

<table>
<thead>
<tr>
<th>DATE (BY DAY OR WEEK)</th>
<th>TOPIC</th>
<th>CHAPTER(S)</th>
<th>ASSIGNMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1 (Jan 17)</td>
<td>Introduction and Overview Introduction to Problem Solving and Programming</td>
<td>Sprankle 1, 2, 3</td>
<td>Read Chapter 1, 2, 3 from Sprankle</td>
</tr>
<tr>
<td>Week 2 (Jan 22, 24)</td>
<td>Introduction to Problem Solving and Programming</td>
<td>Sprankle 1, 2, 3</td>
<td>Read Chapter 4, 5 from Sprankle</td>
</tr>
<tr>
<td>Week 3 (Jan 29, 31)</td>
<td>Problem Solving with the Sequential Logic Structure</td>
<td>Sprankle 4, 5</td>
<td>Read Chapter 6 from Sprankle</td>
</tr>
<tr>
<td>Week 4 (Feb 5, 7)</td>
<td>Problem Solving with Decisions</td>
<td>Sprankle 6</td>
<td>Read Chapter 7 from Sprankle</td>
</tr>
<tr>
<td>Week 5 (Feb 12, 14)</td>
<td>Problem Solving with Loops Processing Arrays</td>
<td>Sprankle 7, 8</td>
<td>Read Chapter 7 from Sprankle</td>
</tr>
<tr>
<td>Week 6 (Feb 19, 21)</td>
<td>Processing Arrays</td>
<td>Sprankle 1, 2, 3, 4, 5, 6, 7, 8</td>
<td>Read Chapter 1, Appendix I from Gaddis</td>
</tr>
<tr>
<td></td>
<td>Exam 1 (02/21/2018)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 7 (Feb 26, 28)</td>
<td>Binary Numbers Introduction to Computers and Programming</td>
<td>Appendix I, Gaddis 1</td>
<td>Read Chapter 2, 3 from Gaddis</td>
</tr>
<tr>
<td>Week 8 (Mar 5, 7)</td>
<td>Introduction to C++ Expressions and Interactivity</td>
<td>Gaddis 2, 3</td>
<td>Read Chapter 4 from Gaddis</td>
</tr>
<tr>
<td>Week 9 (Mar 12, 14)</td>
<td>Spring Break</td>
<td></td>
<td>Read Chapter 4 from Gaddis</td>
</tr>
<tr>
<td>Week 10 (Mar 19, 21)</td>
<td>Making Decisions</td>
<td>Gaddis 4</td>
<td>Read Chapter 5 (Part 1) from Gaddis</td>
</tr>
<tr>
<td>Week 11 (Mar 26, 28)</td>
<td>Looping</td>
<td>Gaddis 5 (Part 1)</td>
<td>Read Chapter 7 from Gaddis</td>
</tr>
<tr>
<td>Week 12 (Apr 2, 4)</td>
<td>Review</td>
<td>Gaddis 1, Appendix I, 1, 2, 3, 4, 5 (Part 1)</td>
<td>Read Chapter 7 from Gaddis</td>
</tr>
<tr>
<td></td>
<td>Exam 2 (04/04/2018)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 13</td>
<td>Arrays</td>
<td>Gaddis 7</td>
<td>Read Chapter 5</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>(Apr 9, 11)</td>
<td></td>
<td></td>
<td>(Part 2) from</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gaddis</td>
</tr>
<tr>
<td>Week 14</td>
<td>Files</td>
<td>Gaddis 5 (Part 2)</td>
<td>Read Chapter 5, 6</td>
</tr>
<tr>
<td>(Apr 16, 18)</td>
<td></td>
<td></td>
<td>from Gaddis</td>
</tr>
<tr>
<td>Week 15</td>
<td>Files Functions</td>
<td>Gaddis 5 (Part 2), 6</td>
<td>Read Chapter 6</td>
</tr>
<tr>
<td>(Apr 23, 25)</td>
<td></td>
<td></td>
<td>from Gaddis</td>
</tr>
<tr>
<td>Week 16</td>
<td>Functions</td>
<td>Gaddis 7, 5 (Part 2), 6</td>
<td></td>
</tr>
<tr>
<td>(Apr 30)</td>
<td>Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(May 2)</td>
<td>Reading day</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final Exam

Wednesday, May 9, 2018, 1:45pm — 4:15pm
Note: Changes in this course schedule may be necessary and will be announced to the class by
the Instructor. The assignments and exams shown are directly related to the Student Learning
Outcomes described in Section F.

J. COURSE POLICIES

Course Syllabus: We will meet for lecture on Tuesdays and Thursdays, when new material
will be presented. We will follow the text generally, but non-text material may also be
included in the lectures. The assignments and exams will be given during the class hours.
You are responsible for all the material presented during the lecture. We will meet for the lab
on Thursdays.

Exams: Exams will cover all lecture and reading material discussed in the class. Exams must
be taken on the hour they are scheduled.

Missed Exam: In the event, if you cannot attend the class to take the exam due to some
emergency or some unavoidable situation (such as serious illness, death in the family,
participation in university sports, religious observations, and so on) you must notify me
as soon as possible before the exam and also you must validate your absence by
providing me a document (e.g., with a letter from your doctor). Once your cause is
validated a make-up exam will be given.

Homework: Assignments will significantly build on the material from the lectures. They
will be posted on the course web page or hard copies are handed out in the class during the
lecture or lab sessions. Please refer to the handout on programming assignments for complete
details on submission requirements. (Details decided per assignment). All the assignments
are due at the beginning of the class on the due date. If the student is absent on the
assignment due date, it is the student's responsibility to see to it that the assignment is
submitted on the designated date. An assignment that is turned in after the class on the due
date is considered one day late. There is a penalty for late submissions. 10% penalty for 1 day
late, 25% penalty for 2-3 days late, 50% penalty for 4-5 days late, and 100% penalty (i.e. no
credit) if submitted after 5 days. If you have not completed your assignment by the due date,
you should submit the work you have done for partial credit. No work will be accepted once
the graded work has been returned or the solution has been disclosed to the class, except for
unusual circumstances which the instructor feels reasonable. **Be sure to backup copies of all
your programs. Note that any kind of hardware or software failure or machine
unavailability in the lab does not merit an extension on the assignment.** Diskettes upon
which major examinations, assignments, projects or papers submitted may be retained by the
instructor as a permanent record of the student's work.

Grading Error: All questions concerning a test score or grading of a returned test or
assignment must be resolved within one week. It is always a good idea to keep all of your
work until the end of the semester. In case of any recording errors or doubts, you may produce them for correction or verification.

Extra Credit: There is no EXTRA CREDIT

Academic Honesty Policy: You are expected to avoid all forms of academic dishonesty as defined in Catalog. In addition, students are expected to behave in an ethical manner in all class activities. If you feel uncertain about a particular activity, please speak to me BEFORE problems arise. Ethical behavior is a requirement for passing this course. All work submitted for grading must be the student's own work. Plagiarism will result in a score of 0 (zero) for the work or dismissal from the course and the Dean of Students office will be notified. No copying from another student's work, of any class, is allowed. It is the student's duty to allow no one to copy his or her work. Anyone found cheating and/or copying, in the exams or assignments, in the instructor's opinion, will receive an automatic F for the course.

Collaboration: There is no collaboration allowed on homework assignments.

Attendance: You must attend all classes and labs. While in class or lab attendance will not directly affect the grade, you are responsible for any materials covered or handed out or announcements made for the tests and assignments in your absence. Records of your attendance will be maintained and reported to the university. Students found missing classes without the instructor's permission will be automatically withdrawn from the course.

Absence from class: Students are responsible for all materials covered in class and assigned. Should a student be absent from class, it is his/her responsibility to get the notes, etc. for that missed class. More important, should there be assignments, it is the student responsibility to obtain such assignments. No excuse will be accepted for assignments not turned in because the student was absent when it was due.

Cell Phone Use: Cell phones and pagers must be turned off during class. First violation receives a warning. All succeeding violations result in a ten points deduction on the last exam. Any violation during a quiz or exam results in a ten percent deduction off the corresponding paper. No warnings for quizzes or exams.

Laptop Use: Laptops, Tablets cannot be used in the class.

Food in Class: No food in the class or labs.

Student Security Statement: Please read the [Student Security Statement](#).

K. COLLEGE AND UNIVERSITY POLICIES

- **Academic Integrity (University)**
 University students are expected to conduct themselves in accordance with the highest standards of academic honesty. Academic misconduct for which a student is
subject to penalty includes all forms of cheating, such as illicit possession of examinations or examination materials, falsification, forgery, complicity or plagiarism. (Plagiarism is the presentation of the work of another as one’s own work.) In this class, academic misconduct or complicity in an act of academic misconduct on an assignment or test will result in a failing grade.

• **Classroom/Professional Behavior**
 Texas A&M University-Corpus Christi, as an academic community, requires that each individual respect the needs of others to study and learn in a peaceful atmosphere. Under Article III of the Student Code of Conduct, classroom behavior that interferes with either (a) the instructor’s ability to conduct the class or (b) the ability of other students to profit from the instructional program may be considered a breach of the peace and is subject to disciplinary sanction outlined in article VII of the Student Code of Conduct. Students engaging in unacceptable behavior may be instructed to leave the classroom. This prohibition applies to all instructional forums, including classrooms, electronic classrooms, labs, discussion groups, field trips, etc.

• **Statement of Civility**
 Texas A&M University-Corpus Christi has a diverse student population that represents the population of the state. Our goal is to provide you with a high quality educational experience that is free from repression. You are responsible for following the rules of the University, city, state and federal government. We expect that you will behave in a manner that is dignified, respectful and courteous to all people, regardless of sex, ethnic/racial origin, religious background, sexual orientation or disability. Behaviors that infringe on the rights of another individual will not be tolerated.

• **Deadline for Dropping a Course with a Grade of W (University)**
 I hope that you never find it necessary to drop this or any other class. However, events can sometimes occur that make dropping a course necessary or wise. Please consult with your academic advisor, the Financial Aid Office, and me, before you decide to drop this course. Should dropping the course be the best course of action, you must initiate the process to drop the course by going to the Student Services Center and filling out a course drop form. Just stopping attendance and participation WILL NOT automatically result in your being dropped from the class. Please consult the Academic Calendar (http://www.tamucc.edu/academics/calendar/) for the last day to drop a course.

• **Grade Appeals (College of Science and Engineering)**
 As stated in University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures, a student who believes that he or she has not been held to appropriate academic standards as outlined in the class syllabus, equitable evaluation procedures, or appropriate grading, may appeal the final grade given in the course. The burden of proof is upon the student to demonstrate the appropriateness of the appeal. A student with a complaint about a grade
is encouraged to first discuss the matter with the instructor. For complete details, including the responsibilities of the parties involved in the process and the number of days allowed for completing the steps in the process, see University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures. These documents are accessible through the University Rules website at http://www.tamucc.edu/provost/university_rules/index.html, and the College of Science and Engineering Grade Appeals webpage at http://sci.tamucc.edu/students/GradeAppeal.html. For assistance and/or guidance in the grade appeal process, students may contact the chair or director of the appropriate department or school, the Office of the College of Science and Engineering Dean, or the Office of the Provost.

• Disability Services
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please call (361) 825-5816 or visit Disability Services in Corpus Christi Hall 116.

If you are a returning veteran and are experiencing cognitive and/or physical access issues in the classroom or on campus, please contact the Disability Services office for assistance at (361) 825-5816.

http://disabilityservices.tamucc.edu/

• Statement of Academic Continuity
In the event of an unforeseen adverse event, such as a major hurricane and classes could not be held on the campus of Texas A&M University–Corpus Christi; this course would continue through the use of Blackboard and/or email. In addition, the syllabus and class activities may be modified to allow continuation of the course. Ideally, University facilities (i.e., emails, web sites, and Blackboard) will be operational within two days of the closing of the physical campus. However, students need to make certain that the course instructor has a primary and a secondary means of contacting each student.

L. OTHER INFORMATION
• Academic Advising
The College of Science & Engineering requires that students meet with an Academic Advisor as soon as they are ready to declare a major. The Academic Advisor will set up a degree plan, which must be signed by the student, a faculty mentor, and the department chair. Meetings are by appointment only; advisors do not take walk-ins. Please call or stop by the Advising Center to check availability and schedule an
appointment. The College’s Academic Advising Center is located in Center for Instruction 350 or can be reached at (361) 825-3928.

GENERAL DISCLAIMER
I reserve the right to modify the information, schedule, assignments, deadlines, and course policies in this syllabus if and when necessary. I will announce such changes in a timely manner during regularly scheduled lecture periods.