ENGR 2325.001 - Statics
Department of Engineering
Spring 2018

A. COURSE INFORMATION

Course number/section: ENGR 2325.001
Class meeting time: TR, 8:00-9:15 AM
Class location: EN108
Course Website: https://bb9.tamucc.edu

B. INSTRUCTOR INFORMATION

Instructor: Jaesung Park
Office location: EN 316D
Office hours: TR, 9:15AM - Noon
Telephone: 979-422-8182
e-mail: jaesung.park@tamucc.edu
Appointments: By e-mail

C. COURSE DESCRIPTION

This course will cover theory of engineering mechanics involving forces, moments, and couples on stationary structures; equilibrium in two and three dimensions; free body diagrams; truss analysis; friction; centroids; centers of gravity and moments of inertia. After the course, the students will be able to build up analytical capabilities for solving static force related engineering problems.

D. PREREQUISITES AND COREQUISITES

Prerequisites
PHYS 2425 - University Physics I

Corequisites
None

E. REQUIRED TEXTBOOK(S), READINGS AND SUPPLIES

Required Textbook(s)

Optional Textbook(s) or Other References

Supplies
None

F. STUDENT LEARNING OUTCOMES AND ASSESSMENT
Assessment is a process used by instructors to help improve learning. Assessment is essential for effective learning because it provides feedback to both students and instructors. A critical step in this process is making clear the course’s student learning outcomes that describe what students are expected to learn to be successful in the course. The student learning outcomes for this course are listed below. By collecting data and sharing it with students on how well they are accomplishing these learning outcomes students can more efficiently and effectively focus their learning efforts. This information can also help instructors identify challenging areas for students and adjust their teaching approach to facilitate learning.

By the end of this course, students should be able to:

1. Students will be able to draw complete free body diagram (FBD) and write appropriate equilibrium equations from the FBD including the support reactions on a structure. Students will display proficiencies by demonstrating following competencies:
 a. Describe position, forces, and moments in terms of vector forms in two and three dimensions.
 b. Determine rectangular and non-rectangular components of a force.
 c. Determine the resultant of a force system including distributed forces.
 d. Simplify system of forces and moments to equivalent systems.

2. Students will be able to apply the concepts of equilibrium to various structures. Students will display proficiencies by demonstrating the following competencies:
 a. Evaluate forces in trusses, frames, and machines.
 b. Determine the internal forces in a structure.
 c. Analyze systems that include frictional forces.

3. Students will be able to calculate moments, center of gravity, centroid, and forces for particular structures. Students will display proficiencies by demonstrating the following competences:
 a. Identify center of gravity and centroid for discrete particles and a body of arbitrary shape.
 b. Determine the resultant force of a pressure loading by a fluid.
 c. Calculate the moment of inertia for an area.

G. INSTRUCTIONAL METHODS AND ACTIVITIES

PowerPoint presentation will be used for the instruction.

H. MAJOR COURSE REQUIREMENTS AND GRADING

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>% of FINAL GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>10 %</td>
</tr>
<tr>
<td>Quizzes</td>
<td>20 %</td>
</tr>
<tr>
<td>Midterm 1</td>
<td>20 %</td>
</tr>
<tr>
<td>Midterm 2</td>
<td>20 %</td>
</tr>
<tr>
<td>Final</td>
<td>30 %</td>
</tr>
</tbody>
</table>
I. COURSE CONTENT/SCHEDULE

<table>
<thead>
<tr>
<th>DATE (BY DAY OR WEEK)</th>
<th>TOPIC</th>
<th>CHAPTER(S)</th>
<th>ASSIGNMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>General Principles</td>
<td>Chapter 1</td>
<td>HW</td>
</tr>
<tr>
<td>Week 2-3</td>
<td>Force Vectors</td>
<td>Chapter 2</td>
<td>HW</td>
</tr>
<tr>
<td>Week 4</td>
<td>Equilibrium of a Particle</td>
<td>Chapter 3</td>
<td>HW & Midterm 1</td>
</tr>
<tr>
<td>Week 5-6</td>
<td>Force System Resultant</td>
<td>Chapter 3</td>
<td>HW</td>
</tr>
<tr>
<td>Week 7-8</td>
<td>Equilibrium of a Rigid Body</td>
<td>Chapter 4</td>
<td>HW</td>
</tr>
<tr>
<td>Week 9-11</td>
<td>Structural Analysis</td>
<td>Chapter 5</td>
<td>HW & Midterm 2</td>
</tr>
<tr>
<td>Week 12</td>
<td>Friction</td>
<td>Chapter 6</td>
<td>HW</td>
</tr>
<tr>
<td>Week 13-14</td>
<td>Center of Gravity and Centroid</td>
<td>Chapter 9</td>
<td>HW</td>
</tr>
<tr>
<td>Week 15</td>
<td>Moments of Inertia</td>
<td>Chapter 10</td>
<td>HW</td>
</tr>
</tbody>
</table>

Note: Changes in this course schedule may be necessary and will be announced to the class by the Instructor. The assignments and exams shown are directly related to the Student Learning Outcomes described in Section F.

J. COURSE POLICIES

Attendance/Tardiness
I will not take attendance after the beginning of the semester, but there will be occasional quizzes at the beginning of lectures to help students prepare midterms and final. Although attendance is not taken in this class, I encourage all students to attend all classes and arrive on time.

Late Work and Make-up Exams
Late work is not going to be accepted. Late homework will only be accepted for cause and preferably with prior notice; death in family, car accident, hospitalized, doctor appointment, etc. Homework will be accepted if it is placed in my mailbox or e-mailed to me by the deadline. Make-up exams are only arranged with 1-week prior notice. No make-up exam will be arranged after each exam.

Homework Checklist
1) Homework and exam should be submitted in organized and neatly presented form.
2) Circle or box the answers to each problem.
3) Appropriate units must be included on all answers.
4) All calculations need to be on an engineering paper.
5) At the top of each page of homework, write your name, the course number, the assignment number, and date.
6) Pages are to be numbered and stapled.
Student Collaboration
I strongly encourage collaboration on homework. It will help many of you to understand
the ideas better if you explain them to each other. Collaboration to understand problems
and concepts is how best to succeed in the working world.

Extra Credit
Extra credit questions/problems will be in some of the tests and homework.

Electronic Device Use
Neither cell phone nor electronic devices except engineering calculator are allowed in the
class as well as in the laboratory. Students are required to turn off cell phone and all other
electronic devices before the class starts.

K. COLLEGE AND UNIVERSITY POLICIES

- Academic Integrity (University)
 University students are expected to conduct themselves in accordance with the highest
 standards of academic honesty. Academic misconduct for which a student is subject
to penalty includes all forms of cheating, such as illicit possession of examinations or
examination materials, falsification, forgery, complicity or plagiarism. (Plagiarism is
the presentation of the work of another as one’s own work.) In this class, academic
misconduct or complicity in an act of academic misconduct on an assignment or test
will result in a failing grade.

- Classroom/Professional Behavior
 Texas A&M University-Corpus Christi, as an academic community, requires that each
individual respect the needs of others to study and learn in a peaceful atmosphere. Under
Article III of the Student Code of Conduct, classroom behavior that interferes with either
(a) the instructor’s ability to conduct the class or (b) the ability of other students to profit
from the instructional program may be considered a breach of the peace and is subject to
disciplinary sanction outlined in article VII of the Student Code of Conduct. Students
engaging in unacceptable behavior may be instructed to leave the classroom. This
prohibition applies to all instructional forums, including classrooms, electronic classrooms,
labs, discussion groups, field trips, etc.

- Statement of Civility
 Texas A&M University-Corpus Christi has a diverse student population that represents the
population of the state. Our goal is to provide you with a high quality educational
experience that is free from repression. You are responsible for following the rules of the
University, city, state and federal government. We expect that you will behave in a manner
that is dignified, respectful and courteous to all people, regardless of sex, ethnic/racial
origin, religious background, sexual orientation or disability. Behaviors that infringe on the
rights of another individual will not be tolerated.
Deadline for Dropping a Course with a Grade of W (University)
I hope that you never find it necessary to drop this or any other class. However, events can sometimes occur that make dropping a course necessary or wise. *Please consult with your academic advisor, the Financial Aid Office, and me, before you decide to drop this course.* Should dropping the course be the best course of action, you must initiate the process to drop the course by going to the Student Services Center and filling out a course drop form. Just stopping attendance and participation WILL NOT automatically result in your being dropped from the class. Please consult the Academic Calendar (http://www.tamucc.edu/academics/calendar/) for the last day to drop a course.

Grade Appeals (College of Science and Engineering)
As stated in University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures, a student who believes that he or she has not been held to appropriate academic standards as outlined in the class syllabus, equitable evaluation procedures, or appropriate grading, may appeal the final grade given in the course. The burden of proof is upon the student to demonstrate the appropriateness of the appeal. A student with a complaint about a grade is encouraged to first discuss the matter with the instructor. For complete details, including the responsibilities of the parties involved in the process and the number of days allowed for completing the steps in the process, see University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures. These documents are accessible through the University Rules website at http://www.tamucc.edu/provost/university_rules/index.html, and the College of Science and Engineering Grade Appeals webpage at http://sci.tamucc.edu/students/GradeAppeal.html. For assistance and/or guidance in the grade appeal process, students may contact the chair or director of the appropriate department or school, the Office of the College of Science and Engineering Dean, or the Office of the Provost.

Disability Services
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please call (361) 825-5816 or visit Disability Services in Corpus Christi Hall 116.

If you are a returning veteran and are experiencing cognitive and/or physical access issues in the classroom or on campus, please contact the Disability Services office for assistance at (361) 825-5816.

http://disabilityservices.tamucc.edu/

Statement of Academic Continuity
In the event of an unforeseen adverse event, such as a major hurricane and classes
could not be held on the campus of Texas A&M University–Corpus Christi; this course would continue through the use of Blackboard and/or email. In addition, the syllabus and class activities may be modified to allow continuation of the course. Ideally, University facilities (i.e., emails, web sites, and Blackboard) will be operational within two days of the closing of the physical campus. However, students need to make certain that the course instructor has a primary and a secondary means of contacting each student.

L. OTHER INFORMATION

- **Academic Advising**

 The College of Science & Engineering requires that students meet with an Academic Advisor as soon as they are ready to declare a major. The Academic Advisor will set up a degree plan, which must be signed by the student, a faculty mentor, and the department chair. Meetings are by appointment only; advisors do not take walk-ins. Please call or stop by the Advising Center to check availability and schedule an appointment. The College’s Academic Advising Center is located in Center for Instruction 350 or can be reached at (361) 825-3928.

GENERAL DISCLAIMER

I reserve the right to modify the information, schedule, assignments, deadlines, and course policies in this syllabus if and when necessary. I will announce such changes in a timely manner during regularly scheduled lecture periods.