BIOLOGY OF VIRUSES BIOL 4304
Department of Life Sciences
Summer II 2019 v3 including journal articles

A. COURSE INFORMATION
 Course number/section: BIOL 4304.001
 Class meeting time: MTWR 8:00am-9:55 am
 Class location: OCNR 255
 Course Website: https://bb9.tamucc.edu

B. INSTRUCTOR INFORMATION
 Instructor: Gregory W. Buck, Ph.D., Associate Professor
 Office location: Tidal Hall 309D (I am rarely in Tidal Hall 236)
 Office hours: M 10:00-11:15 a.m.; TWR 1:00-2:15 p.m. or by appointment
 Telephone: (361) 825-3717
 e-mail: Gregory.Buck@tamucc.edu
 Appointments: Preferred method is by e-mail

C. COURSE DESCRIPTION
 Catalog Course Description
 Introduction to the study of viruses, including viral life cycles, replication schemes and
 Baltimore classification of representative bacteriophages, plant and animal viruses. Emphasis
on analysis and review of primary literature on viruses.

 Extended Course Description
 This course is designed for those students majoring in Biology or Biomedical Sciences and
 may be considered as “pre-grad school.” This course entails a survey of major animal and
human viruses, bacteriophages, and some plant viruses that cause disease. The course will
cover classification of viral groups, methods of viral replication, pathogenesis, and will also
describe emerging viral diseases. The focus will be on analysis of current primary literature,
and less on textbook descriptions, but one text should be used for the class. Please see the
course schedule for the outline of topics to be covered. The course is not designed to cover
all medical aspects of virology and taxonomy described in professional school (MD, DO,
DVM, DDS), nor viral treatment modalities.

D. PREREQUISITES AND COREQUISITES
 Prerequisites
 BIOL 2416, BIOL 2421 and CHEM 1311/1111.
 Corequisites
 Officially, there are none. However, students who have taken Cell Biology (BIOL 3410),
 Molecular Biology (BIOL 3403), Immunology (BIOL/BIMS 4406), Physiology (BIOL 3425),
 and Biochemistry (CHEM 4401/4402), and have the ability to integrate knowledge from these
fields and from Genetics and Microbiology, do best in the course.

E. **RECOMMENDED TEXTBOOK(S), READINGS AND SUPPLIES**

While no textbook is required, I would strongly suggest the following:

Recommended Textbook(s)

This information is a bit watered down from previous editions.

Papers to read for course—Please see page 7 of syllabus.

Optional Textbook(s) or Other References

15. https://talk.ictvonline.org/taxonomy/p/taxonomy_releases; 34th release (2019) of ICTV database <accessed 05/26/2019>

16. http://www.virology.net/garryfavweb.html; Dr. David Sander’s “All the Virology on the Web” site; fairly accurate; accessed 05/26/2019.
Supplies

Textbook(s), tri-fold poster for poster presentation, copies of papers (do off library databases)—I will try to give copies of papers and place on Blackboard if I can legally do it without violating copyright laws, but for clarity of figures, you may wish to get color copies from databases. I have assigned most papers to be accessed free via the Web (“open access”).

F. STUDENT LEARNING OUTCOMES AND ASSESSMENT

Assessment is a process used by instructors to help improve learning. Assessment is essential for effective learning because it provides feedback to both students and instructors. A critical step in this process is making clear the course’s student learning outcomes that describe what students are expected to learn to be successful in the course. The student learning outcomes for this course are listed below. By collecting data and sharing it with students on how well they are accomplishing these learning outcomes students can more efficiently and effectively focus their learning efforts. This information can also help instructors identify challenging areas for students and adjust their teaching approach to facilitate learning.

By the end of this course, students should be able to:

1. Describe the structure and components of viruses;
2. Describe the different classification schemes of viruses (Baltimore classification);
3. Explain the molecular basis of pathogenesis for diseases caused by selected viruses;
4. Critique scientific methodology and approaches in studying the etiology of viral infectious agents;
5. Perform calculations in virology as described at the level of Chemistry I involving molarity, or at the level of Microbiology involving serial dilutions and titers;
6. Refine skills in critical thinking and writing through analyzing current primary literature;
7. In a group project, synthesize knowledge of experimental design; molecular biology, cell biology, and immunology techniques; and of viruses to justify a hypothetical but scientifically-plausible extension of ideas presented from viral primary literature on a virus not presented in class.

G. INSTRUCTIONAL METHODS AND ACTIVITIES

1. Two exams (Mid-Term and Final, 100 pts. each)—Exams may be split over 2-3 days
 a. Mid-Term exam will be a mixture of short answer, essay, multiple choice (including Type K), descriptive T/F, and cases. Exams may be in-class or take-home, or a combination of both. Class exams normally take 75-90 minutes in length.
 b. If a take-home exam is given, it will have a finite time limit outside of class. You are free to use any sources for the take-home exam, including any materials on-line, in the library, from your peers in the class. However, you are NOT free to ask faculty at TAMU-CC or elsewhere, graduate students here at TAMU-CC or elsewhere, or undergraduates who have previously taken this course. I also reserve the right to “split” the exams into take-home and in-class components. Missed exams will be allowed make-up only under approved TAMU-CC guidelines, and will be total essay, and will differ in format than the regular exams.
c. Oral Final Exam
 i. Initially, class members will have only five attempts or questions; they
 will reach in an envelope and take a random question.
 ii. Students must attempt an answer within two minutes and finish within
 five minutes; if you pass, that counts as an attempt.
 iii. Extra attempts may be allowed if all class members have had five
 attempts, provided that all questions have not been answered. If a students
 answered one or more questions with a low number of possible points (10
 pts or fewer), I will give them 1-2 additional opportunities.
 iv. If students have answered all the questions they feel they need to achieve
 the desired grade, they are free to leave.
 v. Students may use the white board or overhead projector to describe their
 answer.
 vi. No help can be given by other students, or from laptops, tablets, smart
 phones, notes, texts, or your own copy of the annotated papers.
 vii. I reserve the right to ask you to do calculations, including titers for
 bacteria or viruses, serial dilutions, or calculations of molarity, molality,
 normality, or percent. These topics have been covered in Microbiology
 and Chemistry I at the basic level. In upper-level courses (Biochemistry,
 Cell Biology, Molecular Biology, Immunology), they have been covered
 in even more detail.

2. Paper Discussion (25 pts each; total 50 pts.)—Students will be asked in GROUPS
 of four or five to lead class discussions of primary journal articles. To make sure
 people don't rest after their time, I reserve the right to give quizzes to the class. All
 students will do two presentations, if there are not too many students in the class. If
 you cannot lead the class when you are asked, I will give you another opportunity if
 there are valid emergency reasons (family illness or accidents, deaths, funerals). Other
 events (professional school and job interviews) will be determined on a case-by-case
 basis. For non-legitimate excuses (as determined by professor), I may deduct 12.5
 points for each discussion, and ask you to try again. Students can be asked to do more
 than two discussions, either for required credit, extra credit or no credit. Caveat: If
 class size is >25, instructor reserves the right to limit students to one paper discussion
 worth 50 pts. I WILL increase number of paper discussions required if <15 students
 are in class. Paper discussions may be used as substitutes for quizzes.

3. Quizzes (50 pts total): Instructor will give 1-5 quizzes, ranging from 5 to 25 points
 total. Due to the shortened summer session, it is unlikely that make-ups will be given
 for quizzes. I reserve the right to use any diagnostic assessments as quiz grades.
 Extra quizzes beyond five, as well as additional paper discussions, may be used for
 make-up or for extra credit.

4. Group Pre-proposal (100 pts) and Poster Project (100 pts): I am requesting that
 students work in groups of three to four (3-4) students to undertake a project on a
 virus not covered in class.
a. Pre-proposals should focus on molecular biology of virus, or the relation of virus to the immune system (e.g., cytokines), NOT on identification, pathogenesis, treatment, or epidemiology!
 i. Students will read several primary journal articles on viruses not covered in class, then choosing a virus for their project. The group will take a future aim from a primary journal Discussion section, and formulate one hypothesis on their virus.
 ii. The group will write a four (4) page (maximum) “pre-proposal,” in which they include a 250-word abstract, a Background section stating the major features of what is known about this virus, what is NOT known, why this dearth of information is important, formulate a hypothesis, and state two Specific Aims to test this hypothesis. They will also include a References section that is not exhaustive yet comprehensive. Students will be graded on a rubric for experimental design, plausibility, knowledge of virus, ability to synthesize and analyze, and on the level of cooperation and participation in the group project. Late pre-proposals are NOT accepted. PLEASE NOTE THIS ASSIGNMENT IS DUE Tuesday July 16, only ONE WEEK AFTER CLASS STARTS!!!

b. Poster (100 pts): Students will then do a poster presentation in A-IMRAD form. Posters are NOT to be printed out on the plotters, but instead students will purchase tri-fold display boards (36” x 48” or 91.4 x 122 cm) on which they can place their projects in Abstract-IMRAD form.
 i. Each student will be a co-author; in addition, add the top three authors of the most seminal papers used for the project.
 ii. Students will describe a detailed research plan in which they will use experiments to “test” this hypothesis, and give results based on what they have read in the literature, as well as a conclusion.
 iii. Team members will be graded on a rubric for experimental design, plausibility, knowledge of virus, ability to synthesize and analyze, and on the level of cooperation and participation in the group project.
 iv. Students will be responsible for a 15 to 20 min group presentation of their project. Instructor reserves the right to put information from posters on exams. Late poster presentations are not accepted.
 v. If all group members do not contribute equally, I will penalize or give differential grades.

H. MAJOR COURSE REQUIREMENTS AND GRADING

Introduction--Please note that Instructor may modify assignments, number of assignments and point values depending on number of students in class. Also note that “any mid-term grades posted on S.A.I.L. and Blackboard are not official University grades, not a guarantee of final grades and are never updated; once they are posted they cannot be changed even if your grade in the class does change.”
### ACTIVITY	% of FINAL GRADE
Exams | 40
Quizzes | 10
Paper discussions | 10
Poster Presentation | 20
Pre-proposal paper | 20

I. COURSE CONTENT/SCHEDULE

Normally I cover Molecular Biology tools in lecture, but this year I am going to “flip” it to you on Blackboard and expect you to read the power point yourself on T Jul 9, along with an updated handout I gave in Immunology this past semester. The text readings are Dimmock et al Chapt. 5 or Cann, Chaps 1 and 6. You can find the readings in Louten by using the Table of Contents or the Index. I will not come directly from any text.

<table>
<thead>
<tr>
<th>DATE (BY DAY OR WEEK)</th>
<th>TOPIC</th>
<th>CHAPTER(S)</th>
<th>ASSIGNMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M Jul 8</td>
<td>Introduction to Virology; History, Structure, Replication</td>
<td>1, 2, 3--Dimmock; 1, 4, 6; Appendix 3--Cann</td>
<td>Form Groups for Pre-Proposal; see Handouts A, C</td>
</tr>
<tr>
<td>T Jul 9</td>
<td>Viral Pathogenesis & Immunology I; flipped Molecular Biology & Immunology Tools Power Point and Handout D12</td>
<td>13, 14--Dimmock</td>
<td>see Handouts B, D Powerpoint: Molecular Biology Tools</td>
</tr>
<tr>
<td>W Jul 10</td>
<td>Viral Pathogenesis & Immunology II</td>
<td>13, 14--Dimmock</td>
<td>Choose virus for Pre-proposal & Poster; see Handout G</td>
</tr>
<tr>
<td>R Jul 11</td>
<td>ss (+) RNA viruses I--Picornavirus, Flavivirus, Corona</td>
<td>11--Dimmock 3, 5--Cann</td>
<td>Paper #1 Hermanns et al.</td>
</tr>
<tr>
<td>M Jul 15</td>
<td>ss (+) RNA viruses II: Toga; ds: Reoviruses</td>
<td>11--Dimmock 3, 5--Cann</td>
<td>Paper #2-- Kudo et al</td>
</tr>
<tr>
<td>T Jul 16</td>
<td>(-) stranded RNA viruses: Paramyxvo, Orthomyxo</td>
<td>11, 20, 23--Dimmock 3, 5--Cann</td>
<td>Undergrad Pre-proposal due; Paper #3 Davis et al</td>
</tr>
<tr>
<td>W Jul 17</td>
<td>(-) stranded RNA Filoviridae, Rhabdoviridae, Arenavirus</td>
<td>11--Dimmock 3, 5--Cann</td>
<td>Paper #4 Pyle and Whelan</td>
</tr>
<tr>
<td>R Jul 18</td>
<td>Hepadnaviridae and Hepatitis</td>
<td>22--Dimmock</td>
<td>Handout H</td>
</tr>
</tbody>
</table>
viruses

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>M Jul 22</td>
<td>Midterm Exam</td>
<td>Paper #5: Farag et al</td>
</tr>
<tr>
<td>T Jul 23</td>
<td>Retroviridae</td>
<td>21, 25--Dimmock 7--Cann</td>
</tr>
<tr>
<td>W Jul 24</td>
<td>DNA Viruses I: Herpesviridae</td>
<td>16, 17--Dimmock</td>
</tr>
<tr>
<td>R Jul 25</td>
<td>DNA Viruses II: Adeno, Parvo, Circo</td>
<td>25--Dimmock</td>
</tr>
<tr>
<td>M Jul 29</td>
<td>DNA Viruses III: Papilloma, Polyoma, Pox</td>
<td>25--Dimmock</td>
</tr>
<tr>
<td>T Jul 30</td>
<td>Mimiviruses or Emerging Viruses</td>
<td>Mimiviruses or Emerging Viruses</td>
</tr>
<tr>
<td>W Jul 31</td>
<td>Undergrad Posters</td>
<td>Paper #9: Xia et al.</td>
</tr>
<tr>
<td>R Aug 1</td>
<td>Undergrad Posters</td>
<td></td>
</tr>
<tr>
<td>M Aug 5</td>
<td>Oral final Exam</td>
<td></td>
</tr>
<tr>
<td>T Aug 6</td>
<td>Oral final Exam</td>
<td></td>
</tr>
<tr>
<td>W Aug 7</td>
<td>Oral final Exam</td>
<td></td>
</tr>
<tr>
<td>R Aug 8</td>
<td>Oral final Exam</td>
<td></td>
</tr>
<tr>
<td>F Aug 9</td>
<td>Oral Final Exam</td>
<td></td>
</tr>
</tbody>
</table>

Handouts:
New designation Name
A v11 Abridged History of Virology
B v8 Gene Fusions
C v5 Baltimore Classification
D v12 Molecular Biology and Immunology Methods
E v6 Viruses and Immunity
F Reverse Transcription—Not given this summer
G v8 Viruses not covered in class
H v14 Hepatitis Viruses

Note: Changes in this course schedule may be necessary and will be announced to the class by the Instructor. The assignments and exams shown link to the Student Learning Outcomes described in Section F.

Papers to read for course (all articles should be found via PubMed, Science Direct, Science Daily®, or other electronic sources—please download and print using databases found at Bell Library website.

8. Pyle JD, Whelan SPJ. 2019. RNA ligands activate the Machupo virus polymerase and guide promoter usage. Proceedings of the National Academy of Sciences. 201900790 DOI: 10.1073/pnas.1900790116 (Paper #4) [please download this paper by clicking on the digital object identifier].

J. COURSE POLICIES

Attendance/Tardiness
Students are expected to attend every scheduled class meeting and to be on-time. It is the responsibility of the student to obtain any material missed during an absence from his/her classmates. Power Points are not placed in the library and placement on Blackboard will be limited.

Late Work and Make-up Exams

Students will be given a Late Assignment Penalty for tardy work: 10% assignment grade deduction per class day late. However, after the 3rd day, late assignments will not be accepted. In-class late assignments are defined by being turned in after 8:15 am. Please note that class assignments may be sent to me by e-mail or slid under my office door; tardiness is determined by the time noted on the instructor’s Inbox, but allowances can be made for server problems. Files contaminated by viruses, spyware, and worms will not be accepted. DO NOT ASK THE CUSTODIANS to let you into my office to place an assignment on my desk.

Extra Credit

A minimum of ~30 pt extra credit is assured as pre- and post-test assessments. No make-ups are given for pre- and post-tests. Other extra credit assignments may be given at instructor’s prerogative. Instructor is not obligated to give make-up assignments for extra credit opportunities, whether excused or unexcused. The ONLY possible exception is for students with a university-approved scheduled absence. The make-up (if given) may not be the exact same assignment given to the class.

Cell Phone Use

DO NOT USE CAMERA PHONES IN LECTURE. DO NOT SEND TEXT MESSAGES DURING CLASS. Please turn off all cell phones, beepers, Bluetooth devices, Black Berrys, etc., before entering the classroom, or at least place them on silent mode. I would prefer that earpieces not be worn in lecture. DO NOT TAKE PHOTOS of Power Point slides or videos with your cell phone camera unless otherwise instructed. Recording of lectures with recorders can only be done with permission of instructor—please see me privately.

Laptop Use

I have no problems with any student using a laptop in class, as long as they are not looking at pornography, anime, videos, etc.

Food in Class

I prefer that you not eat or drink in class, but I will not throw you out or ask you to leave.

Missed Exams

Students have two choices for making up exams due to excused absences. They can do an all-essay make-up exam, or doubling the grade on the final exam. There is no make-up for missed quizzes, or for missed exams due to unexcused absences. Missed extra credit opportunities may or may not be given make-up assignments, depending upon the nature of the assignment. Please note that instructor determines what is not excused. I define excused absences as...
Participation
I expect that all members in the class will participate in the questioning, discussions, and interactions within the lecture. Formal assessment of class participation is not done as part of grade, but I do informally monitor it, and I will note it if you ask me for a letter of recommendation.

Others
I will use rubrics to describe how assignments will be graded. These documents have been placed on Blackboard.

K. COLLEGE AND UNIVERSITY POLICIES

• Academic Integrity (University)
 University students are expected to conduct themselves in accordance with the highest standards of academic honesty. Academic misconduct for which a student is subject to penalty includes all forms of cheating, such as illicit possession of examinations or examination materials, falsification, forgery, complicity or plagiarism. (Plagiarism is the presentation of the work of another as one’s own work.) In this class, academic misconduct or complicity in an act of academic misconduct on an assignment or test will result in a failing grade.

• Classroom/Professional Behavior
 Texas A&M University-Corpus Christi, as an academic community, requires that each individual respect the needs of others to study and learn in a peaceful atmosphere. Under Article III of the Student Code of Conduct, classroom behavior that interferes with either (a) the instructor’s ability to conduct the class or (b) the ability of other students to profit from the instructional program may be considered a breach of the peace and is subject to disciplinary sanction outlined in article VII of the Student Code of Conduct. Students engaging in unacceptable behavior may be instructed to leave the classroom. This prohibition applies to all instructional forums, including classrooms, electronic classrooms, labs, discussion groups, field trips, etc.

• Statement of Civility
 Texas A&M University-Corpus Christi has a diverse student population that represents the population of the state. Our goal is to provide you with a high quality educational experience that is free from repression. You are responsible for following the rules of the University, city, state and federal government. We expect that you will behave in a manner that is dignified, respectful and courteous to all people, regardless of sex, ethnic/racial origin, religious background, sexual orientation or disability. Behaviors that infringe on the
rights of another individual will not be tolerated.

- **Deadline for Dropping a Course with a Grade of W (University)**
 I hope that you never find it necessary to drop this or any other class. However, events can sometimes occur that make dropping a course necessary or wise. *Please consult with your academic advisor, the Financial Aid Office, and me, before you decide to drop this course.* Should dropping the course be the best course of action, you must initiate the process to drop the course by going to the Student Services Center and filling out a course drop form. Just stopping attendance and participation WILL NOT automatically result in your being dropped from the class. Please consult the Academic Calendar (http://www.tamucc.edu/academics/calendar/) for the last day to drop a course.

- **Grade Appeals (College of Science and Engineering)**
 As stated in University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures, a student who believes that he or she has not been held to appropriate academic standards as outlined in the class syllabus, equitable evaluation procedures, or appropriate grading, may appeal the final grade given in the course. The burden of proof is upon the student to demonstrate the appropriateness of the appeal. A student with a complaint about a grade is encouraged to first discuss the matter with the instructor. For complete details, including the responsibilities of the parties involved in the process and the number of days allowed for completing the steps in the process, see University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures. These documents are accessible through the University Rules website at http://www.tamucc.edu/provost/university_rules/index.html, and the College of Science and Engineering Grade Appeals webpage at http://sci.tamucc.edu/students/GradeAppeal.html. For assistance and/or guidance in the grade appeal process, students may contact the chair or director of the appropriate department or school, the Office of the College of Science and Engineering Dean, or the Office of the Provost.

- **Disability Services**
 The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute (ADA of 1990, including the ADA Amendments from 2008 (PL 110-325), as well as Section 504 of the Rehabilitation Act of 1973. These statutes provide comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please call (361) 825-5816 or visit Disability Services in Corpus Christi Hall 116.

 This act also includes **returning veterans** who may be experiencing cognitive and/or physical access issues in the classroom or on campus. If you are a returning veteran and are experiencing cognitive and/or physical access issues in the classroom or on campus, please contact the Disability Services office for
assistance at (361) 825-5816.

http://disabilityservices.tamucc.edu/

If you need disability accommodations in this class, please contact the instructor as soon as possible. If you have mobility problems, are pregnant, or you may have a history of seizures, please notify the instructor PRIVATELY so that assistance can be given in case of fire drills or emergencies. Dr. Buck should receive a Disabilities Accommodation Notice (hard copy or e-mail) from the Disabilities Office.

• Statement of Academic Continuity
In the event of an unforeseen adverse event, such as a major hurricane and classes could not be held on the campus of Texas A&M University–Corpus Christi; this course would continue through the use of Blackboard and/or email. In addition, the syllabus and class activities may be modified to allow continuation of the course. Ideally, University facilities (i.e., emails, web sites, and Blackboard) will be operational within two days of the closing of the physical campus. However, students need to make certain that the course instructor has a primary and a secondary means of contacting each student.

If class is cancelled due to a pending hurricane or because of floods, that information is sent via your islander.tamucc.edu account. It is strongly suggested that students have a functioning islander.tamucc.edu account!! I will also try to send it within Blackboard 9.1, as stated above. I will not send out personal information regarding grades through other types of e-mail servers, only through islander.tamucc.edu. Please make sure this account is working.

Note that if class is cancelled, and a test, presentation or any other evaluation is postponed, that test, presentation or other evaluation will occur on the first day that faculty and students are allowed to return.

L. OTHER INFORMATION

• Academic Advising
The College of Science & Engineering requires that students meet with an Academic Advisor as soon as they are ready to declare a major. The Academic Advisor will set up a degree plan, which must be signed by the student, a faculty mentor, and the department chair. Meetings are by appointment only; advisors do not take walk-ins. Please call or stop by the Advising Center to check availability and schedule an appointment. The College’s Academic Advising Center is located in Center for Instruction 350 or can be reached at (361) 825-3928.

Hints on doing well in course
This course is considered “Introduction to Graduate School.” First, read the syllabus.
Second, re-read the syllabus. Third, read the syllabus again.

Next, read the assigned text chapters. Read the papers assigned and look at the Power Points. If you have problems reading primary literature, I would suggest that you go to the bookstore and buy *Reading Primary Literature: A Practical Guide to Evaluating Research Articles in Biology* by Christopher M. Gillen (Pearson/Benjamin-Cummings).

Pay attention to the slides in the Power Point labeled “Student Learning Outcomes.” These points are what I expect you to be able to know and do for the written midterm and the oral final exam.

I expect you to incorporate the Power point information and the information in the texts with information from the papers we discussed. Moreover, you should add what you have learned from your other courses. Finally, you must be able to think critically. This course aims to do higher-level critical thinking, not just memorize the textbooks and regurgitate facts. I have taught this course since 2003. Students who have taken it tell me this course was very beneficial in their ability to think critically, and it prepared them for graduate and professional school, and the work force if they went into research.

GENERAL DISCLAIMER

I reserve the right to modify the information, schedule, assignments, deadlines, and course policies in this syllabus if and when necessary. I will announce such changes in a timely manner during regularly scheduled lecture periods.