University Physics II - PHYS 2426.001
Department of Physical and Environmental Science
Spring 2019

A. COURSE INFORMATION

Course number/section: PHYS 2426.001
Class meeting time: Tuesday, Thursday 9:30AM – 10:45AM (Lecture)
Class location: CI 128
Course Websites: http://bb9.tamucc.edu/

B. INSTRUCTOR INFORMATION

Instructor: Dr. Barbara Szczerbinska
Office location: NRC 3503
Office hours: Tuesday 8:15AM-9:15AM, 2PM-3PM
Wednesday 9AM-11AM
Thursday 8:15AM-9:15AM, 2PM-3PM
Telephone: (361) 825-3916
E-mail: Barbara.Szczerbinska@tamucc.edu
Appointments: Appointments outside of the office hours should be scheduled via email

C. COURSE DESCRIPTION

Calculus based introduction to oscillatory and wave phenomena, electricity and magnetism. The classical theory of fields will be used to study electric and magnetic phenomena, including light, and their role in modern technology. This course counts toward the natural science component of University Core Curriculum.

PHYS 2426 is a 4 credit hours course. Concurrent registration in Physics 2426.001 (lecture) and Physics 2426.101/102/103/104 (lab) is required. Letter grade will be given in PHYS 2426.001 only, with 25% of the final letter grade determined by work done in the lab.

D. PREREQUISITES AND COREQUISITES

Prerequisites: PHYS-2425, University Physics I
MATH-2414, Calculus II (or placement beyond MATH 2414)
Co-requisites: Laboratory Safety Online Seminar (SMTE 0095)
Laboratory Safety Online Seminar, must be taken and completed early in the semester, even if the student has previously completed the Physics Lab Safety Seminar. SMTE 0095 is a short, free, online course that discloses how to be safe from the specific dangers in the laboratory. The deadline is the Census Date (10th day of Fall/Spring semesters), and students may be dropped from PHYS 2426 for not completing this seminar.

E. REQUIRED TEXTBOOK, READINGS AND SUPPLIES

Required Textbook(s)
Enhanced Webassign (EWA), http://webassign.net/ will be accessed through Blackboard and used for homework assignments. Blackboard roster is linked to the WebAssign roster and WebAssign ID is issued for every student enrolled in PHYS 2426 course.

There are several ways of purchasing EWA access:
• **Option 1:** Students can use “Life of Edition” access from a previous semester of physics that used Serway/Jewett.

• **Option 2:** The textbook (see below) comes with an Access Code.

• **Option 3:** Printed access card ISBN-13 9781285858418 from Cengage should be available from the University Bookstore

• **Option 4:** Access can be purchased on the EWA website once you are logged in.

Students who purchased multi-term EWA in a prior semester but whose account is not active, MUST call WebAssign customer services to re-activate the account.

Highly Recommended Textbook:

Physics for Scientists and Engineers, by Serway & Jewett, 9th Edition Hybrid

or

ISBN-10: 1305116399, ISBN-13: 9781305116399 (Please, make sure you also have an access code to WebAssign)

Lab Manual: Lab Materials are posted on the Blackboard.

Supplies:
- Students are expected to have internet access throughout the course.
- Students are required to have a scientific calculator or graphing calculator.
- Students are expected to have a pair of safety glasses for the laboratory

F. STUDENT LEARNING OUTCOMES AND ASSESSMENT

Assessment is a process used by instructors to help improve learning. Assessment is essential for effective learning because it provides feedback to both students and instructors. A critical step in this process is making clear the course’s student learning outcomes that describe what students are expected to learn to be successful in the course. The student learning outcomes for this course are listed below. By collecting data and sharing it with students on how well they are accomplishing these learning outcomes students can more efficiently and effectively focus their learning efforts. This information can also help instructors identify challenging areas for students and adjust their teaching approach to facilitate learning.

Course Goals

Throughout the course students will be closely guided by the instructor to accomplish the following goals:
- become familiar with the fundamental concepts of physics discussed in the course description
- gain a respect for the power of physics and its benefits to all as well as some of the problems associated with misuse of physics principles
- be able to relate physics to other sciences, their own life and society in general
- develop qualitative and quantitative reasoning skills as well as critical thinking skills
- master communication and teamwork skills

Student Learning Outcomes

Upon successful completion of the course, students should be able to demonstrate mastery of the following outcomes:

Critical Thinking Skills:
- identify and explain the fundamental concepts, terminology and theories in physics
• interpret physical electric, magnetic and optical processes through physical laws
• analyze and evaluate a given physical situation in order to derive a solution to a given problem based on the laws of physics
• apply selected basic physics concepts and theories to contemporary issues in real world
• demonstrate the scientific methods and principles in a laboratory environment
• gather, analyze and critically evaluate data using the scientific methods

Empirical and Quantitative Skills:

• apply the computational skills to solve physics problems and find solutions of dynamical physical processes by manipulating and analyzing numerical data
• arrive at informed conclusions regarding the dynamic of physical processes by manipulating and analyzing observable facts

Communication Skills:

• express in writing and graphically findings developed and interpreted through the course of laboratory exercises

Teamwork:

• work together and share responsibility to conduct satisfactorily laboratory experiments and communicate their findings

Content of the Course

1. Electricity and magnetism
 • electric charges
 • insulator and conductors
 • electric forces and electric fields
 • Gauss’s law
 • electric potential
 • electrical energy and capacitance
 • current and resistance
 • direct current circuits
 • Kirchhoff’s rules
 • magnets
 • Magnetic forces and magnetic fields
 • Ampere’s law
 • Induced voltages and inductance
 • Faraday’s law
 • Generators
 • Alternating current circuits
 • transformers

2. Oscillations and waves
 • simple harmonic oscillator
 • mechanical waves
• sound waves
• superposition and standing waves
• electromagnetic waves
• Maxwell’s equations

3. Light and optics
• the nature of light
• reflection and refraction
• mirrors and lenses
• image formation
• interference, polarization and diffraction
• optical instruments

G. INSTRUCTIONAL METHODS AND ACTIVITIES

Reading Assignments: Students are expected to complete the assigned reading before the stated deadline. Conceptual questions and problems from lectures and textbook will be used in the quizzes and exams.

Online Homework: All homework assignments will be available to the students through WebAssign. Access code for WebAssign is required. Each student will get web downloadable customized numerical and conceptual problems, the answers to which should be submitted online by the due date. The solution to the problems will be available after the tests deadlines. Students will have an access to their WebAssign account from the class Blackboard. Students are encouraged to work together on the homework and to seek help from the instructor, and other resources (including SIs and tutors). Homework questions may appear on the exams where no collaboration or use of the additional resources will be allowed - good understanding of the process how the problems are solved will be crucial to guarantee success in class.

Exams: All exams will be closed book exams with a basic formula sheet provided as part of the exam handout. The exams will contain both conceptual questions and numerical problems. The exam will include three types of questions: multiple-choice questions (both conceptual and simple numerical questions), ‘short answer’ type of questions (usually numerical with some conceptual components) and ‘show your work’ type of questions (manly numerical problems). Partial credit will be available for short answer and show your work type of questions. Students are encouraged to review the exams upon their return and contact the instructor with any questions they may have regarding the solutions and grading. The final exam will be available for students’ review upon request but the copies will not be returned to the student and the student cannot copy the exam. Exam dates and times for term exams will be tentatively posted on the course schedule page and will also be announced in class. More specific guidance on material for the exams will be provided prior to the exams.

Laboratory: A separate physics lab policy that will be posted on Blackboard. Laboratory safety is of primary importance and all students should stop immediately their activities and follow the laboratory instructor’s instructions if any safety issue was to arise. Failure to follow safety instructions will result in dismissal from the laboratory at the discretion of the laboratory instructor possibly without the possibility to make-up the laboratory.

All laboratory experiments will be performed in groups of three and will require a collaborative lab report. However, each lab partner is individually responsible for recording experimental observations and data. If one lab partner recorded experimental data and two did not, and the first lab partner dropped the course or is unreachable and uncommunicative, two other lab partners are still responsible for completing work on that lab on time. At the end of the semester each group member will be asked to
fill the Team Self-Assessment form to evaluate how the group functions and evaluate the team members’ individual contributions to the team work.

Lab Reports: The lab report on an experiment should be comprehensive, including a clear analysis of the experimental results. The required structure of the lab report will be explained to you in the lab and posted on the Blackboard. The lab instructor will evaluate group's quality of work, the care taken in collecting data and in performing the experiment, and understanding of physics evident from the analysis of the data and discussion of it in the report. A lab report on an experiment is due at the beginning of the next lab period. The average grade for the laboratory reports is 80% of lab grade.

Pre-laboratory practice: Pre-laboratory practice will be assigned ahead of each lab. Students must complete the assigned work prior to coming to the lab in order to succeed in Pre/Post Quizzes that will precede the experiment. The average grade for Pre/Post Quizzes is 20% of the lab grade.

There is NO a makeup day. If a student has a valid excuse to miss lab, the lab instructor will exempt the report grade and QUIZ grade. Otherwise, the student must attend another lab section. **No more than two reports could be exempt** as stated in “Lab Rules and Regulations” posted on Blackboard and announced during the first lab.

In the rare event that a discipline problem arises in the laboratory, the instructor can ask the student(s) to leave the laboratory. Discipline problems include student behavior disrupting the conduct of the laboratory or behavior disrespectful of the instructor or other students. The instructor will be the judge of such behavior. For the first offense the student(s) will be asked to make up the end of the lab at the end of the semester. If a student was asked more than once to leave the laboratory, no further make-up lab opportunities will be provided and the student will be given a grade of zero for this additional lab(s).

Supplemental Help: The students are strongly encouraged to meet the instructor on a regular basis to clarify your understanding of the course material and to seek help in completing the homework assignments. **FREE** mathematics and physics tutoring services are available via the CASA, GSSC 119, Phone 825-5933; students are strongly encouraged to make use of this service. Students should also form a peer group of classmates to collectively study and understand physics.

H. MAJOR COURSE REQUIREMENTS AND GRADING

Final composite numerical grade is based on the following weightings to the different components:

<table>
<thead>
<tr>
<th>Evaluation Type</th>
<th>Percentage of Total Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebAssign Homework</td>
<td>30%</td>
</tr>
<tr>
<td>Test 1</td>
<td>15%</td>
</tr>
<tr>
<td>Test 2</td>
<td>15%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>15%</td>
</tr>
<tr>
<td>Laboratory</td>
<td>25%</td>
</tr>
</tbody>
</table>

Laboratory consists of three different types of evaluations:
Your letter grade will be determined using the university catalog's description of the meaning of each letter grade, and the instructor's criteria for translating that description to actual numerical grade ranges. (See the catalog's section on 'Grades'; A = Excellent, B = Good, C = Average, D= Passing, F = Failure; work not passed). The procedure for awarding letter grades will be as follows:

<table>
<thead>
<tr>
<th>% Grade</th>
<th>Letter Grade</th>
<th>Catalog Meaning of the Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90% and above</td>
<td>A</td>
<td>Excellent</td>
</tr>
<tr>
<td>80% to 89.9%</td>
<td>B</td>
<td>Good</td>
</tr>
<tr>
<td>70% to 79.9%</td>
<td>C</td>
<td>Average</td>
</tr>
<tr>
<td>60% to 69.9%</td>
<td>D</td>
<td>Passing</td>
</tr>
<tr>
<td>Below 60%</td>
<td>F</td>
<td>Failing</td>
</tr>
</tbody>
</table>

Grade Insurance: The numerical value of the grade will be rounded to one decimal place. Example: 89.94 is equivalent to 89.9 and will be considered B; 89.97 is equivalent to 90 and will be considered A. Attendance of Supplemental Instruction sessions and bonus problems on the test/homework assignment will be used by the instructor in making decision on the letter grade for the students with border-line numerical grade.

I. COURSE CONTENT/SCHEDULE

Tentative PHYSICS 2426 Course Calendar

If any changes to any of the below stipulations are made, they will be announced in class and blackboard, and you are responsible for keeping yourself informed of such changes

<table>
<thead>
<tr>
<th>Week</th>
<th>Lab number and topic</th>
<th>Date</th>
<th>Lecture topic</th>
<th>Reading assignment</th>
<th>Online Homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0: Introductory</td>
<td>01-15</td>
<td>Introductions and Expectations</td>
<td>Ch.23.1-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01-17</td>
<td>Electric Charge. Charging Objects by Induction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Students who missed Introductory Lab in week one must attend one of the lab sections in week two (seat reservation posted on Blackboard)</td>
<td>01-22</td>
<td>Coulomb’s Law, Electric Force and Field</td>
<td>Ch.23. 3-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01-24</td>
<td>Electric Field of Uniform Charge Distribution, Electric Field Lines, Motion of the Charged Particle in Uniform Electric Field</td>
<td>Ch.23. 5-7</td>
<td>HW #1 Electric Forces and Electric Fields Open: 01/16 @9:30am Due: 02/01 @9:30pm</td>
</tr>
<tr>
<td>3</td>
<td>1: Electrical Field</td>
<td>01-29</td>
<td>Electric Flux, Gauss Law, Conductors in Electrostatic Equilibrium</td>
<td>Ch.24. 1-2, 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2: Ohm’s Law</td>
<td>01-31</td>
<td>Electric Potential and Electric Potential Energy, Electric Potential due to a Charged Conductor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ch.25.1-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>02-05</td>
<td>Capacitance and Capacitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>02-07</td>
<td>Electric Current, Resistance and Ohm’s Law</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: Resistor Configurations</td>
<td>02-12</td>
<td>DC Circuits, Resistors in Parallel and Series, Kirchhoff’s Rules</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>02-14</td>
<td>R-C Circuits, Review – Test #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4: RC Circuit - Formal Report</td>
<td>02-19</td>
<td>Test #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>02-20</td>
<td>Magnetic Field and Forces, Motion of a Charged Particle in Magnetic Field</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>02-26</td>
<td>Magnetic Force on a Current Carrying Conductor, Torque on a Current Loop, Biot-Savart Law</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>02-28</td>
<td>Magnetic Force Between Two Parallel Conductors, Amper’s Law, Magnetic Flux</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5: Magnetic Field</td>
<td>03-05</td>
<td>Faraday’s Law of Induction, Lenz’s Law</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>03-07</td>
<td>Generators and Motors, Self-Induction, Inductance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6: Electron in a Magnetic Field</td>
<td>04-02</td>
<td>Test #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>04-04</td>
<td>Simple Harmonic Oscillator, Mechanical waves</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>04-09</td>
<td>Standing Waves, Sound</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>04-11</td>
<td>Electromagnetic Waves, Maxwell’s Equations, EM Spectrum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>04-16</td>
<td>Nature of Light, Reflection, Refraction, Dispersion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>04-18</td>
<td>Wave Optics: double and single slit experiments, polarization</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>04-23</td>
<td>Image Formation: Mirrors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>04-25</td>
<td>Image Formation: Lenses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11: Interference of Light - Formal Report</td>
<td>04-30</td>
<td>REVIEW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12: Reflection and Refraction</td>
<td>02-05</td>
<td>Electric Potential, Energy and Capacitance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>02-08</td>
<td>Open: 02/01 @9:30am Due: 02/08 @9:30pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: Resistor Configurations</td>
<td>02-12</td>
<td>Current, Resistance and DC Circuits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>02-14</td>
<td>Open: 02/08 @9:30am Due: 02/19 @9:30pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4: RC Circuit - Formal Report</td>
<td>02-19</td>
<td>Test #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>02-21</td>
<td>Magnetic Field and Forces, Motion of a Charged Particle in Magnetic Field</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>02-26</td>
<td>Magnetic Force on a Current Carrying Conductor, Torque on a Current Loop, Biot-Savart Law</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>02-28</td>
<td>Magnetic Force Between Two Parallel Conductors, Amper’s Law, Magnetic Flux</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>03-05</td>
<td>Faraday’s Law of Induction, Lenz’s Law</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>03-07</td>
<td>Generators and Motors, Self-Induction, Inductance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>04-02</td>
<td>Test #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>04-04</td>
<td>Simple Harmonic Oscillator, Mechanical waves</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>04-09</td>
<td>Standing Waves, Sound</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>04-11</td>
<td>Electromagnetic Waves, Maxwell’s Equations, EM Spectrum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>04-16</td>
<td>Nature of Light, Reflection, Refraction, Dispersion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>04-18</td>
<td>Wave Optics: double and single slit experiments, polarization</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>04-23</td>
<td>Image Formation: Mirrors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>04-25</td>
<td>Image Formation: Lenses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>04-30</td>
<td>REVIEW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final Exam is on Thursday, May 09 at 08:00am – 10:30am in CI 128

Final Exam Covers Chapters 23-38 and 15-18
J. COURSE POLICIES

Attendance/Tardiness
Students are expected to be present for ALL scheduled classes. Students need to contact the instructor in advance about missing lab, quiz or test AND need to provide written excuse from a qualified physician for the absence to be considered an excused absence. Students are responsible for all material covered and/or assigned in class. In case of a university excused absence missed homework and tests may be made up and will be handled on a case by case basis with prior notification required unless absolutely impossible. Valid reasons for missing a lab, quiz or an exam are (1) health related, backed by a doctor's note, (2) family emergency which can be documented, (3) job interview with the letter of invitation for the interview, and (4) participation in a previously scheduled athletic, or university event or travel to a conference.

Late Work and Make-up Exams
There are NO provisions for making up exams except in cases where prior arrangements have been made with the instructor and which are approved by university guidelines. Valid reasons for missing a lab, quiz or an exam are (1) health related, backed by a doctor's note, (2) family emergency which can be documented, (3) job interview with the letter of invitation for the interview, and (4) participation in a previously scheduled athletic, or university event or travel to a conference. In case of emergency resulting in not informing the instructor of your absence from class, contact the instructor at your earliest convenience regarding your absence.

Extra Credit
Some homework assignments may include bonus problem. Also tests will include one bonus problem. Bonus problems on the tests/homework assignments will be used by the instructor in making decision on the letter grade for the students with border-line numerical grade.

Cell Phone Use
Cell phones can not be used in class or lab.

Computer Use
Many experiments require the use of PCs in the physics laboratory. Computer skills that the student should acquire in this course include (a) the use of available physics software, and (b) creating and using a spreadsheet, including graphing and linear regression. Students should bring a portable data storage device to the lab to save the files created. Alternately, save the work on remote drives accessible through a network. Each student must have access to a copy of the files the group created. Spend a few minutes at the end of the lab period to copy the created files.

Missed Exams
There are NO provisions for making up exams except in cases where prior arrangements have been made with the instructor and which are approved by university guidelines. Valid reasons for missing a lab, quiz or an exam are (1) health related, backed by a doctor's note, (2) family emergency which can be documented, (3) job interview with the letter of invitation for the interview, and (4) participation in a previously scheduled athletic, or university event or travel to a conference. In case of emergency resulting in not informing the instructor of your absence from class, contact the instructor at your earliest convenience regarding your absence.
K. COLLEGE AND UNIVERSITY POLICIES

- **Academic Integrity (University)**
 University students are expected to conduct themselves in accordance with the highest standards of academic honesty. Academic misconduct for which a student is subject to penalty includes all forms of cheating, such as illicit possession of examinations or examination materials, falsification, forgery, complicity or plagiarism. (Plagiarism is the presentation of the work of another as one’s own work.) In this class, academic misconduct or complicity in an act of academic misconduct on an assignment or test will result in a failing grade.

- **Classroom/Professional Behavior**
 Texas A&M University-Corpus Christi, as an academic community, requires that each individual respect the needs of others to study and learn in a peaceful atmosphere. Under Article III of the Student Code of Conduct, classroom behavior that interferes with either (a) the instructor’s ability to conduct the class or (b) the ability of other students to profit from the instructional program may be considered a breach of the peace and is subject to disciplinary sanction outlined in article VII of the Student Code of Conduct. Students engaging in unacceptable behavior may be instructed to leave the classroom. This prohibition applies to all instructional forums, including classrooms, electronic classrooms, labs, discussion groups, field trips, etc.

- **Statement of Civility**
 Texas A&M University-Corpus Christi has a diverse student population that represents the population of the state. Our goal is to provide you with a high quality educational experience that is free from repression. You are responsible for following the rules of the University, city, state and federal government. We expect that you will behave in a manner that is dignified, respectful and courteous to all people, regardless of sex, ethnic/racial origin, religious background, sexual orientation or disability. Behaviors that infringe on the rights of another individual will not be tolerated.

- **Deadline for Dropping a Course with a Grade of W (University)**
 I hope that you never find it necessary to drop this or any other class. However, events can sometimes occur that make dropping a course necessary or wise. **Please consult with your academic advisor, the Financial Aid Office, and me, before you decide to drop this course.** Should dropping the course be the best course of action, you must initiate the process to drop the course by going to the Student Services Center and filling out a course drop form. Just stopping attendance and participation WILL NOT automatically result in your being dropped from the class. Please consult the Academic Calendar (http://www.tamucc.edu/academics/calendar/) for the last day to drop a course.

- **Grade Appeals (College of Science and Engineering)**
 As stated in University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures, a student who believes that he or she has not been held to appropriate academic standards as outlined in the class syllabus, equitable evaluation procedures, or appropriate grading, may appeal the final grade given in the course. The burden of proof is upon the student to demonstrate the appropriateness of the appeal. A student with a complaint about a grade is encouraged to first discuss the matter with the instructor. For complete details, including the responsibilities of the parties involved in the process and the number of days allowed for completing the steps in the process, see University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures. These documents are accessible through the University Rules website at http://www.tamucc.edu/provost/university_rules/index.html, and the
College of Science and Engineering Grade Appeals webpage at http://sci.tamucc.edu/students/GradeAppeal.html. For assistance and/or guidance in the grade appeal process, students may contact the chair or director of the appropriate department or school, the Office of the College of Science and Engineering Dean, or the Office of the Provost.

- **Disability Services**
 The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please call (361) 825-5816 or visit Disability Services in Corpus Christi Hall 116. If you are a returning veteran and are experiencing cognitive and/or physical access issues in the classroom or on campus, please contact the Disability Services office for assistance at (361) 825-5816. http://disabilityservices.tamucc.edu/

- **Statement of Academic Continuity**
 In the event of an unforeseen adverse event, such as a major hurricane and classes could not be held on the campus of Texas A&M University–Corpus Christi; this course would continue through the use of Blackboard and/or email. In addition, the syllabus and class activities may be modified to allow continuation of the course. Ideally, University facilities (i.e., emails, web sites, and Blackboard) will be operational within two days of the closing of the physical campus. However, students need to make certain that the course instructor has a primary and a secondary means of contacting each student.

L. **OTHER INFORMATION**

- **Academic Advising**
 The College of Science & Engineering requires that students meet with an Academic Advisor as soon as they are ready to declare a major. The Academic Advisor will set up a degree plan, which must be signed by the student, a faculty mentor, and the department chair. Meetings are by appointment only; advisors do not take walk-ins. Please call or stop by the Advising Center to check availability and schedule an appointment. The College’s Academic Advising Center is located in Center for Instruction 350 or can be reached at (361) 825-3928.

- **Academic Calendar**

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 14</td>
<td>Classes begin</td>
</tr>
<tr>
<td>January 21</td>
<td>Martin Luther King, Jr. Holiday</td>
</tr>
<tr>
<td>January 22</td>
<td>Last day to register or add a class</td>
</tr>
<tr>
<td>February 26</td>
<td>Last day to apply for Spring graduation</td>
</tr>
<tr>
<td>March 11-15</td>
<td>Spring Break</td>
</tr>
<tr>
<td>April 5</td>
<td>Last day to drop a class</td>
</tr>
<tr>
<td>April 30</td>
<td>Last day to withdraw from the University</td>
</tr>
<tr>
<td>May 1</td>
<td>Last day of classes</td>
</tr>
<tr>
<td>May 2</td>
<td>Reading Day</td>
</tr>
<tr>
<td>May 3, 6-9</td>
<td>Final examinations</td>
</tr>
<tr>
<td>May 11-14</td>
<td>Grading days</td>
</tr>
<tr>
<td>May 11</td>
<td>Spring Commencement</td>
</tr>
<tr>
<td>May 14</td>
<td>Spring grades due</td>
</tr>
</tbody>
</table>
M. GENERAL DISCLAIMER
I reserve the right to modify the information, schedule, assignments, deadlines, and course policies in this syllabus if and when necessary. I will announce such changes in a timely manner during regularly scheduled lecture periods. The updated information will also be available on the Blackboard website.