ENGR 2325 - STATICS
Department of Engineering
Spring 2020

A. COURSE INFORMATION

Course number/section: ENGR 2325.002
Class meeting time: MWF 11:00 - 11:50 am
Class location: EN-108
Course Website: Blackboard

B. INSTRUCTOR INFORMATION

Instructor: Dr. Gauhar Sabih
Office location: EN 321
Office hours: TR 11:00 a.m. – 1:00 p.m.
Telephone: (361) 825-3294
E-mail: gauhar.sabih@tamucc.edu
Appointments: Send an e-mail request for appointment, with proposed time as needed.

C. COURSE DESCRIPTION

This course will cover theory of engineering mechanics involving forces, moments, and couples on stationary structures; equilibrium in two and three dimensions; free body diagrams; truss analysis; friction; centroids; and centers of gravity. After the course, the students will be able to build up analytical capabilities for solving static force related engineering problems.

D. PREREQUISITES AND COREQUISITES

Prerequisites
PHYS 2425 - University Physics I

Corequisites
None

E. REQUIRED TEXTBOOK(S), READINGS AND SUPPLIES

F. STUDENT LEARNING OUTCOMES AND ASSESSMENT

Assessment is a process used by instructors to help improve learning. Assessment is essential for effective learning because it provides feedback to both students and instructors. A critical step in this process is making clear the course’s student learning outcomes that describe what students are expected to learn to be successful in the course. The student learning outcomes for this course are listed below. By collecting data and sharing it with students on how well they
are accomplishing these learning outcomes students can more efficiently and effectively focus their learning efforts. This information can also help instructors identify challenging areas for students and adjust their teaching approach to facilitate learning.

By the end of this course, students should be able to:
1. Students will be able to draw complete free body diagram (FBD) and write appropriate equilibrium equations from the FBD including the support reactions on a structure. Students will display proficiencies by demonstrating following competencies:
 a. Describe position, forces, and moments in terms of vector forms in two and three dimensions.
 b. Determine rectangular and non-rectangular components of a force.
 c. Determine the resultant of a force system including distributed forces.
 d. Simplify system of forces and moments to equivalent systems.

2. Students will be able to apply the concepts of equilibrium to various structures. Students will display proficiencies by demonstrating the following competencies:
 a. Evaluate forces in trusses, frames, and machines.
 b. Determine the internal forces in a structure.
 c. Analyze systems that include frictional forces.

3. Students will be able to calculate moments, center of gravity, centroid, and forces for particular structures. Students will display proficiencies by identifying center of gravity and centroid for discrete particles and a body of arbitrary shape.

A. **INSTRUCTIONAL METHODS AND ACTIVITIES**

 Lectures, homework, quizzes, exams

G. **MAJOR COURSE REQUIREMENTS AND GRADING**

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>% of FINAL GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Exam</td>
<td>30%</td>
</tr>
<tr>
<td>Midterm Exams</td>
<td>30%</td>
</tr>
<tr>
<td>Homework</td>
<td>20%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>15%</td>
</tr>
<tr>
<td>Attendance & Course Folder</td>
<td>5%</td>
</tr>
</tbody>
</table>
H. COURSE CONTENT/SCHEDULE

<table>
<thead>
<tr>
<th>WEEK</th>
<th>TOPIC</th>
<th>CHAPTER</th>
<th>ASSIGNMENTS</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>General Principles</td>
<td>Chapter 1</td>
<td>HW</td>
<td></td>
</tr>
<tr>
<td>Week 2-3</td>
<td>Force Vectors</td>
<td>Chapter 2</td>
<td>HW</td>
<td></td>
</tr>
<tr>
<td>Week 4</td>
<td>Equilibrium of a Particle</td>
<td>Chapter 3</td>
<td>HW</td>
<td>Midterm 1</td>
</tr>
<tr>
<td>Week 5-6</td>
<td>Force System Resultant</td>
<td>Chapter 4</td>
<td>HW</td>
<td></td>
</tr>
<tr>
<td>Week 7-8</td>
<td>Equilibrium of a Rigid Body</td>
<td>Chapter 5</td>
<td>HW</td>
<td>Midterm 2</td>
</tr>
<tr>
<td>Week 9-11</td>
<td>Structural Analysis</td>
<td>Chapter 6</td>
<td>HW</td>
<td></td>
</tr>
<tr>
<td>Week 12</td>
<td>Friction</td>
<td>Chapter 8</td>
<td>HW</td>
<td>Midterm 3</td>
</tr>
<tr>
<td>Week 13-15</td>
<td>Center of Gravity and Centroid</td>
<td>Chapter 9</td>
<td>HW</td>
<td></td>
</tr>
</tbody>
</table>

Final Exam: May 08, Friday, 11:00 a.m. – 1:30 p.m.

Important Dates:
January 21 Classes begin
March 9-13 Spring Break
April 10 Last day to drop a class
May 7 Reading Day-No class

Note: Changes in this course schedule may be necessary and will be announced to the class by the Instructor. The assignments and exams shown are directly related to the Student Learning Outcomes described in Section F.

I. COURSE POLICIES

Exam
Instructions of midterm and final exams will be provided in the class one week before the exam dates. No make-up exam is allowed.

Quiz
Quizzes will be given during regular class time. No make-up quiz is allowed.

Homework
Homework will be submitted as hardcopies. The due date and time of homework will be announced in the
class or online. Late submission is not acceptable. You will receive a zero on the assignment turned in after the due date unless a permission is secured from the Instructor prior to the due date. The checklist for homework submission is as follows:

1) Homework and exam should be submitted in organized and neatly presented form.
2) Circle or box the answers to each problem.
3) Appropriate units must be included on all answers.
4) All calculations need to be on an engineering paper.
5) At the top of each page of homework, write your name, the course number, the assignment number, and date.
6) Pages are to be numbered and stapled.

Attendance/Tardiness
You must attend all lectures. You are responsible for any materials covered or handed out or announcements made in your absence. Records of your attendance will be maintained. Tardiness without prior consent of the Instructor is not acceptable and will be penalized. Being tardy consistently can be basis to be removed from classroom or not be permitted to enter classroom. For more than two absences, a deduction from your final grade will apply.

Course Folder
Course folder should contain homework assignments, quizzes, and midterm exams. Materials should be organized based on the time of completion.

Cell Phone Use
Cell phones and beepers must be turned off or set on silent/vibrate mode during lectures, quizzes and exams. During midterm and final exams, cell phones and beepers must be put in your backpack or in the front of the classroom.

Food in Class
Food is prohibited in classroom.

Student Collaboration
I strongly encourage collaboration on homework. It will help many of you to understand the ideas better if you explain them to each other. Collaboration to understand problems and concepts is the route to success in the working world.

Electronic Device Use
Neither cell phone nor electronic devices except engineering calculator are allowed in the class. Students are required to turn off cell phone and all other electronic devices before the class starts.

J. COLLEGE AND UNIVERSITY POLICIES

- Academic Integrity (University)
 University students are expected to conduct themselves in accordance with the highest standards of academic honesty. Academic misconduct for which a student is subject to penalty includes all forms of cheating, such as illicit possession of examinations or examination materials, falsification, forgery, complicity or
plagiarism. (Plagiarism is the presentation of the work of another as one’s own work.) In this class, academic misconduct or complicity in an act of academic misconduct on an assignment or test will result in a failing grade.

• **Classroom/Professional Behavior**
 Texas A&M University-Corpus Christi, as an academic community, requires that each individual respect the needs of others to study and learn in a peaceful atmosphere. Under Article III of the Student Code of Conduct, classroom behavior that interferes with either (a) the instructor’s ability to conduct the class or (b) the ability of other students to profit from the instructional program may be considered a breach of the peace and is subject to disciplinary sanction outlined in article VII of the Student Code of Conduct. Students engaging in unacceptable behavior may be instructed to leave the classroom. This prohibition applies to all instructional forums, including classrooms, electronic classrooms, labs, discussion groups, field trips, etc.

• **Statement of Civility**
 Texas A&M University-Corpus Christi has a diverse student population that represents the population of the state. Our goal is to provide you with high quality educational experience that is free from repression. You are responsible for following the rules of the University, city, state and federal government. We expect that you will behave in a manner that is dignified, respectful and courteous to all people, regardless of sex, ethnic/racial origin, religious background, sexual orientation or disability. Behaviors that infringe on the rights of another individual will not be tolerated.

• **Deadline for Dropping a Course with a Grade of W (University)**
 The grade of W will be assigned to any student officially dropping a course. Please consult with the instructor before you decide to drop to be sure it is the best thing to do. Just stopping attendance and participation WILL NOT automatically result in your being dropped from the class. Should dropping the course be the best course of action, visit the Office of the University Registrar for the Course Drop Form that must submitted. No student is eligible to receive a W without completing the official drop process by this deadline. Please consult the Academic Calendar (http://www.tamucc.edu/academics/calendar/) for the last day to drop a course.

• **Grade Appeals (College of Science and Engineering)**
 As stated in University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures, a student who believes that he or she has not been held to appropriate academic standards as outlined in the class syllabus, equitable evaluation procedures, or appropriate grading, may appeal the final grade given in the course. The burden of proof is upon the student to demonstrate the appropriateness of the appeal. A student with a complaint about a grade is encouraged to first discuss the matter with the instructor. For complete details, including the responsibilities of the parties involved in the process and the number of days allowed for completing the steps in the process, see University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures. These documents are accessible through the University Rules website at
http://www.tamucc.edu/provost/university_rules/index.html, and the College of Science and Engineering Grade Appeals webpage at http://sci.tamucc.edu/students/GradeAppeal.html. For assistance and/or guidance in the grade appeal process, students may contact the chair or director of the appropriate department or school, the Office of the College of Science and Engineering Dean, or the Office of the Provost.

- **Disability Services**
 The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please call (361) 825-5816 or visit Disability Services in Corpus Christi Hall 116. If you are a returning veteran and are experiencing cognitive and/or physical access issues in the classroom or on campus, please contact the Disability Services office for assistance at (361) 825-5816. http://disabilityservices.tamucc.edu/

- **Statement of Academic Continuity**
 In the event of an unforeseen adverse event, such as a major hurricane and classes could not be held on the campus of Texas A&M University–Corpus Christi; this course would continue through the use of Blackboard and/or email. In addition, the syllabus and class activities may be modified to allow continuation of the course. Ideally, University facilities (i.e., emails, web sites, and Blackboard) will be operational within two days of the closing of the physical campus. However, students need to make certain that the course instructor has a primary and a secondary means of contacting each student.

K. OTHER INFORMATION

- **Academic Advising**
 The College of Science & Engineering requires that students meet with an Academic Advisor as soon as they are ready to declare a major. The Academic Advisor will set up a degree plan, which must be signed by the student, a faculty mentor, and the department chair. Meetings are by appointment only; advisors do not take walk-ins. Please call or stop by the Advising Center to check availability and schedule an appointment. The College’s Academic Advising Center is located in Center for Instruction 350 or can be reached at (361) 825-3928.

GENERAL DISCLAIMER

I reserve the right to modify the information, schedule, assignments, deadlines, and course policies in this syllabus if and when necessary. I will announce such changes in a timely manner during regularly scheduled lecture periods.