GISC 1301-002 Physical Geography and Mapping
Department of Computing Sciences
Spring 2020

A. COURSE INFORMATION
 Course number/section: GISC 1301-002
 Class meeting time: Lecture: TR 2:00 - 3:15 pm
 Class location: Lecture: BH 207
 Course Website: http://bb9.tamucc.edu

B. INSTRUCTOR INFORMATION
 Instructor: Davey Edwards, PhD, PLS LSLS CFedS
 Office location: CBI 105
 Office hours: W 8:00-9:00 & 10:00-12:30; Th 9:30-11:00
 e-mail: davey.edwards@tamucc.edu

C. COURSE DESCRIPTION
 GEOG 1301.001 Catalog Course Description
 The goal of this course is to encourage you to think geographically, examining the interactions between
 physical systems and human activities. Introduction to topics covered include elements of Physical
 Geography (studies of atmosphere, ocean and land surface environments), Geographic Information
 Systems (computer systems that capture, analyze, and display geographic information), and human
 environmental interactions. Students may not receive credit for both GEOG 1301 and GISC 1301.

D. PREREQUISITES AND COREQUISITES
 There are no prerequisites or corequisites required for this course.

E. REQUIRED TEXTBOOK(S), READINGS AND SUPPLIES
 For this course, you will need reliable access to a laptop or desktop to access supplemental materials
 that will be provided to you via Blackboard. The following textbook is recommended, but not required.

 Introducing Physical Geography, 6th Edition
 Author: Alan H. Strahler, ISBN: 978-1118396209

F. STUDENT LEARNING OUTCOMES AND ASSESSMENT
 Assessment is a process used by instructors to help improve learning. Assessment is essential for
 effective learning because it provides feedback for both students and instructors. A critical step in this
 process is making clear the course’s student learning outcomes that describe what students are
 expected to learn to be considered successful in the course. The student learning outcomes for this
 course are listed below. By collecting data and sharing it with students on how well they are
 accomplishing these learning outcomes, students can more efficiently and effectively focus their
 learning efforts. This information can also help instructors identify challenging areas for students and
 adjust their teaching approach to facilitate learning.

1. Students will familiarize themselves with the basic concepts of Physical Geography
 a. Students will acquire the vocabulary and methods associated with geospatial analyses
 b. Students will have a working knowledge of earth-sun geometry, biogeographic processes, and
 plate tectonics
c. Students will be able to model, interpret, and have a working knowledge of earth’s atmospheric circulation patterns and processes that influence global climate patterns
d. Students will be able to explain how weathering and erosion impacts earth’s systems and landforms

2. Students will analyze sample data to assess geographic processes and patterns and draw conclusions about the data based on knowledge obtained during the course
3. Interpret and assess models and maps to acquire additional information about Earth’s systems
4. Learn how humans impact Earth’s physical systems and vice versa

In addition to the content knowledge the course also provides you with basic core competencies such as:

1. Critical thinking: The study of patterns and processes within the physical world requires us to think critically about potential drivers of change. In this course we will approach landscape-based studies using the scientific method.
2. Problem solving by working collaboratively in teams: Students will have the opportunity to develop teamwork skills by answering a series of critical thinking questions during presentations and in-class projects throughout the semester.
3. Communication skills: students will be introduced to scientific communication skills though technical writing and presentation exercises. Students will have the ability to explore concepts by creating charts, maps, graphics and presenting orally. Students will also improve communication skills by taking notes, extracting information from the internet, from class presentation and engaging in in-class discussions.
4. Empirical and quantitative skills when working with numeral data, interpreting graphs and maps, etc.

G. INSTRUCTIONAL METHODS AND ACTIVITIES
In-person lectures and content found on Blackboard.

H. MAJOR COURSE REQUIREMENTS AND GRADING
Student learning outcomes will be assessed through attendance at lectures and participation in class group activities, completion of assignments by scheduled due dates, and completion of exams by scheduled due dates.

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>% of FINAL GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam 1</td>
<td>12.5</td>
</tr>
<tr>
<td>Exam 2</td>
<td>12.5</td>
</tr>
<tr>
<td>Final Exam</td>
<td>15</td>
</tr>
<tr>
<td>Quizzes</td>
<td>15</td>
</tr>
<tr>
<td>In Class Activities</td>
<td>10</td>
</tr>
<tr>
<td>Homework Assignments</td>
<td>25</td>
</tr>
<tr>
<td>Class Project</td>
<td>10</td>
</tr>
</tbody>
</table>
GRADE RUBRIC

<table>
<thead>
<tr>
<th>Grade</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>≥90</td>
</tr>
<tr>
<td>B</td>
<td>≥80 and <90</td>
</tr>
<tr>
<td>C</td>
<td>≥70 and <80</td>
</tr>
<tr>
<td>D</td>
<td>≥60 and <70</td>
</tr>
<tr>
<td>F</td>
<td><60</td>
</tr>
</tbody>
</table>

I. TENTATIVE COURSE CONTENT/SCHEDULE

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Course Overview, Introduction to Geography</td>
</tr>
<tr>
<td>2</td>
<td>Earth as a Rotating Planet</td>
</tr>
<tr>
<td>3</td>
<td>Global Energy Patterns</td>
</tr>
<tr>
<td>4</td>
<td>Our Atmosphere</td>
</tr>
<tr>
<td>5</td>
<td>Atmospheric Temperature and Climate Change</td>
</tr>
<tr>
<td>6</td>
<td>Wind and Global Circulation</td>
</tr>
<tr>
<td>7</td>
<td>Weather Systems</td>
</tr>
<tr>
<td>8</td>
<td>Global Climates</td>
</tr>
<tr>
<td>9</td>
<td>Biogeography</td>
</tr>
<tr>
<td>10</td>
<td>Earth’s Tectonics</td>
</tr>
<tr>
<td>11</td>
<td>Weathering, Erosion, and Mass Wasting</td>
</tr>
<tr>
<td>12</td>
<td>Hydrologic Introduction</td>
</tr>
<tr>
<td>13</td>
<td>Fluvial Systems</td>
</tr>
<tr>
<td>Finals</td>
<td>Final Exam</td>
</tr>
</tbody>
</table>

Note: Changes in this course schedule may be necessary and will be announced to the class by the Instructor. The assignments and exams shown are directly related to the Student Learning Outcomes described in Section F.

J. COURSE POLICIES

Attendance/Tardiness

Students are expected to attend all lectures. Students that are not present during assignments will only have the opportunity for exemptions or makeups if they present the instructor with the appropriate documents that are considered a university-approved excused absence. Otherwise, all late work will be a zero. You will be exempted from your lowest homework assignment at the end of the semester.

Late Work and Make-up Exams

All assignments must be completed on time. No late submissions will be accepted. Students are also expected to take the final exam during the university scheduled time (foreign travel is not an acceptable reason to be absent from exams). An exception can be made as per university policy, if a student has three or more exams in one day; they have the option to move one.
Extra Credit
No extra credit options are available for this course upon request. No exceptions.

Email
Consider email as official correspondence warranting professional language. Professional emails include elements such as a short descriptive subject line, salutation, complete inquiry in the body of the message, your full name, and course and section number. Unprofessional emails will result in a non-response and request for proper correspondence.

Lecture Slides
Lecture slides are meant to be supplemental for visual learners in the course, and to help students learn how to visualize data, models, and processes. Slides will be made available to you on Blackboard, so you do not need to rush to write down the slides word-for-word unless you feel that doing so helps you. However, it is highly recommended you make additional notes concerning material the instructor shares in class that may not be depicted in the slides that you may still be responsible for knowing on quizzes and exams.

Communication about Life Events
It is the your (student's) responsibility to keep up with the course instruction, assignments, and examinations. Should a life event interrupt your ability to meet these responsibilities, you must inform the instructor about this as soon as possible and within a reasonable amount of time so that a course of action can be determined. Communicating with the instructor about these life events in an unreasonable time frame is not acceptable and will not change the outcome of missed work nor will it be a valid reason to receive an 'Incomplete' designation for the course.

Originality of Work
Every exam and assignment for this class must be your own work. Any indication of cheating or plagiarism will result in a '0' assignment score and a referral to the Honor's council.

K. COLLEGE AND UNIVERSITY POLICIES

- **Academic Integrity (University)**
 University students are expected to conduct themselves in accordance with the highest standards of academic honesty. Academic misconduct for which a student is subject to penalty includes all forms of cheating, such as illicit possession of examinations or examination materials, falsification, forgery, complicity or plagiarism. (Plagiarism is the presentation of the work of another as one's own work.) In this class, academic misconduct or complicity in an act of academic misconduct on an assignment or test will result in a failing grade.

- **Classroom/Professional Behavior**
 Texas A&M University-Corpus Christi, as an academic community, requires that each individual respect the needs of others to study and learn in a peaceful atmosphere. Under Article III of the Student Code of Conduct, classroom behavior that interferes with either (a) the instructor's ability to conduct the class or (b) the ability of other students to profit from the instructional program may be considered a breach of the peace and is subject to disciplinary sanction outlined in article VII of the Student Code of Conduct. Students engaging in unacceptable behavior may be instructed to leave the classroom. This prohibition applies to all instructional forums, including classrooms, electronic classrooms, labs, discussion groups, field trips, etc.
• **Statement of Civility**
 Texas A&M University-Corpus Christi has a diverse student population that represents the population of the state. Our goal is to provide you with a high quality educational experience that is free from repression. You are responsible for following the rules of the University, city, state and federal government. We expect that you will behave in a manner that is dignified, respectful and courteous to all people, regardless of sex, ethnic/racial origin, religious background, sexual orientation or disability. Behaviors that infringe on the rights of another individual will not be tolerated.

• **Deadline for Dropping a Course with a Grade of W (University)**
 The grade of W will be assigned to any student officially dropping a course. Please consult with the instructor before you decide to drop to be sure it is the best thing to do. Just stopping attendance and participation WILL NOT automatically result in your being dropped from the class. Should dropping the course be the best course of action, visit the Office of the University Registrar for the Course Drop Form that must be submitted. No student is eligible to receive a W without completing the official drop process by this deadline. Please consult the Academic Calendar (http://www.tamucc.edu/academics/calendar/) for the last day to drop a course.

• **Grade Appeals (College of Science and Engineering)**
 As stated in University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures, a student who believes that he or she has not been held to appropriate academic standards as outlined in the class syllabus, equitable evaluation procedures, or appropriate grading, may appeal the final grade given in the course. The burden of proof is upon the student to demonstrate the appropriateness of the appeal. A student with a complaint about a grade is encouraged to first discuss the matter with the instructor. For complete details, including the responsibilities of the parties involved in the process and the number of days allowed for completing the steps in the process, see University Procedure 13.02.99.C2.01, Student Grade Appeal Procedures. These documents are accessible through the University Rules website at http://www.tamucc.edu/provost/university_rules/index.html, and the College of Science and Engineering Grade Appeals webpage at http://sci.tamucc.edu/students/GradeAppeal.html. For assistance and/or guidance in the grade appeal process, students may contact the chair or director of the appropriate department or school, the Office of the College of Science and Engineering Dean, or the Office of the Provost.

• **Disability Services**
 The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please call (361) 825-5816 or visit Disability Services in Corpus Christi Hall 116.

 If you are a returning veteran and are experiencing cognitive and/or physical access issues in the classroom or on campus, please contact the Disability Services office for assistance at (361) 825-5816.

 http://disabilityservices.tamucc.edu
• Statement of Academic Continuity
 In the event of an unforeseen adverse event, such as a major hurricane and classes could not
 be held on the campus of Texas A&M University–Corpus Christi; this course would continue
 through the use of Blackboard and/or email. In addition, the syllabus and class activities may
 be modified to allow continuation of the course. Ideally, University facilities (i.e., emails, web
 sites, and Blackboard) will be operational within two days of the closing of the physical
 campus. However, students need to make certain that the course instructor has a primary and
 a secondary means of contacting each student.

L. OTHER INFORMATION

• Academic Advising
 The College of Science & Engineering requires that students meet with an Academic Advisor
 as soon as they are ready to declare a major. The Academic Advisor will set up a degree plan,
 which must be signed by the student, a faculty mentor, and the department chair. Meetings
 are by appointment only; advisors do not take walk-ins. Please call or stop by the Advising
 Center to check availability and schedule an appointment. The College’s Academic Advising
 Center is located in Center for Instruction 350 or can be reached at (361) 825-3928.

GENERAL DISCLAIMER
I reserve the right to modify the information, schedule, assignments, deadlines, and course policies
in this syllabus if and when necessary. I will announce such changes in a timely manner during
regularly scheduled lecture periods.